243 research outputs found
Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool
Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants
Formal modeling and analysis of cognitive agent behavior
From an external perspective, cognitive agent behavior can be described by specifying (temporal) correlations of a certain
complexity between stimuli (input states) and (re)actions (output states) of the agent. From an internal perspective the agent’s
dynamics can be characterized by direct (causal) temporal relations between internal and mental states of the agent. The latter
type of specifications can be represented in a relatively simple, executable format, which enables different types of analysis
of the agent’s behavior. In particular, simulations of the agent’s behavior under different (environmental) circumstances
can be explored. Furthermore, by applying verification techniques, automated analysis of the consequences of the agent’s behavior
can be carried out. To enable such types of analysis when only given an external behavioral specification, this has to be
transformed first into some type of executable format. An automated procedure for such a transformation is proposed in this
paper. The application of the transformation procedure is demonstrated for a number of cases, showing examples of the types
of analysis as mentioned for different forms of behavior
Simulating crowd evacuation with socio-cultural, cognitive, and emotional elements
In this research, the effects of culture, cognitions, and emotions on crisis management and prevention are analysed. An agent-based crowd evacuation simulation model was created, named IMPACT, to study the evacuation process from a transport hub. To extend previous research, various socio-cultural, cognitive, and emotional factors were modelled, including: language, gender, familiarity with the environment, emotional contagion, prosocial behaviour, falls, group decision making, and compliance. The IMPACT model was validated against data from an evacuation drill using the existing EXODUS evacuation model. Results show that on all measures, the IMPACT model is within or close to the prescribed boundaries, thereby establishing its validity. Structured simulations with the validated model revealed important findings, including: the effect of doors as bottlenecks, social contagion speeding up evacuation time, falling behaviour not affecting evacuation time significantly, and travelling in groups being more beneficial for evacuation time than travelling alone. This research has important practical applications for crowd management professionals, including transport hub operators, first responders, and risk assessors
Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography
Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7 +/- 34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2 +/- 56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC
The neural substrate of positive bias in spontaneous emotional processing
Even in the presence of negative information, healthy human beings display an optimistic tendency when thinking of past success and future chances, giving a positive bias to everyday's cognition. The tendency to actively select positive thoughts suggests the existence of a mechanism to exclude negative content, raising the issue of its dependence on mechanisms like those of effortful control. Using perfusion imaging, we examined how brain activations differed according to whether participants were left to prefer positive thoughts spontaneously, or followed an explicit instruction to the same effect, finding a widespread dissociation of brain perfusion patterns. Under spontaneous processing of emotional material, recruitment of areas associated with effortful attention, such as the dorsolateral prefrontal cortex, was reduced relative to instructed avoidance of negative material (F(1,58) = 26.24, p = 0.047, corrected). Under spontaneous avoidance perfusion increments were observed in several areas that were deactivated by the task, including the perigenual medial prefrontal cortex. Furthermore, individual differences in executive capacity were not associated with positive bias. These findings suggest that spontaneous positive cognitive emotion regulation in health may result from processes that, while actively suppressing emotionally salient information, differ from those associated with effortful and directed control
Recommended from our members
Motives and comprehension in a public goods game with induced emotions
This study analyses the sensitivity of public goods contributions through the lens of psychological motives. We report the results of a public goods experiment in which subjects were induced with the motives of care and anger through autobiographical recall. Subjects' preferences, beliefs, and perceptions under each motive are compared with those of subjects experiencing a neutral autobiographical recall control condition. We find, but only for those subjects with the highest comprehension of the game, that care elicits significantly higher contributions than anger, with the control treatment in between. This positive influence of the care motive on unconditional giving is accounted for partly by preferences for giving and partly by the beliefs concerning greater contributions by others. Anger also affects attention to own and other's payoffs (using mouse tracking) and perceptions of the game's incentive structure (cooperative or competitive)
The role of salt abuse on risk for hypercalciuria
<p>Abstract</p> <p>Background</p> <p>Elevated sodium excretion in urine resulting from excessive sodium intake can lead to hypercalciuria and contribute to the formation of urinary stones. The aim of this study was to evaluate salt intake in patients with urinary lithiasis and idiopathic hypercalciuria (IH).</p> <p>Methods</p> <p>Between August 2007 and June 2008, 105 lithiasic patients were distributed into 2 groups: Group 1 (n = 55): patients with IH (urinary calcium excretion > 250 mg in women and 300 mg in men with normal serum calcium); Group 2 (n = 50): normocalciuric patients (NC). Inclusion criteria were: age over 18 years, normal renal function (creatinine clearance ≥ 60 ml/min), absent proteinuria and negative urinary culture. Pregnant women, patients with intestinal pathologies, chronic diarrhea or using corticoids were excluded. The protocol of metabolic investigation was based on non-consecutive collection of two 24-hour samples for dosages of: calcium, sodium, uric acid, citrate, oxalate, magnesium and urinary volume. Food intake was evaluated by the three-day dietary record quantitative method, and the Body Mass Index (BMI) was calculated and classified according to the World Health Organization (WHO). Sodium intake was evaluated based on 24-hour urinary sodium excretion.</p> <p>Results</p> <p>The distribution in both groups as regards mean age (42.11 ± 10.61 vs. 46.14 ± 11.52), weight (77.14 ± 16.03 vs. 75.99 ± 15.80), height (1.64 ± 0.10 vs. 1.64 <b>± plusorminus </b>0.08) and BMI (28.78 ± 5.81 vs. 28.07 ± 5.27) was homogeneous. Urinary excretion of calcium (433.33 ± 141.92 vs. 188.93 ± 53.09), sodium (280.08 ± 100.94 vs. 200.44.93 ± 65.81), uric acid (880.63 ± 281.50 vs. 646.74 ± 182.76) and magnesium (88.78 ± 37.53 vs. 64.34 ± 31.84) was significantly higher in the IH group (p < 0.05). There was no statistical difference in calcium intake between the groups, and there was significantly higher salt intake in patients with IH than in NC.</p> <p>Conclusions</p> <p>This study showed that salt intake was higher in patients with IH as compared to NC.</p
A computational model of perception and action for cognitive robotics
Robots are increasingly expected to perform tasks in complex environments. To this end, engineers provide them with processing architectures that are based on models of human information processing. In contrast to traditional models, where information processing is typically set up in stages (i.e., from perception to cognition to action), it is increasingly acknowledged by psychologists and robot engineers that perception and action are parts of an interactive and integrated process. In this paper, we present HiTEC, a novel computational (cognitive) model that allows for direct interaction between perception and action as well as for cognitive control, demonstrated by task-related attentional influences. Simulation results show that key behavioral studies can be readily replicated. Three processing aspects of HiTEC are stressed for their importance for cognitive robotics: (1) ideomotor learning of action control, (2) the influence of task context and attention on perception, action planning, and learning, and (3) the interaction between perception and action planning. Implications for the design of cognitive robotics are discussed
- …
