1,399 research outputs found

    Holographic Wilsonian flows and emergent fermions in extremal charged black holes

    Full text link
    We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a `generalized' basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS_2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS_2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in arXiv:1001.5049 [hep-th]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become `light' in the AdS_2 region near the Fermi surface and emerge as new dynamical degrees of freedom.Comment: 37 pages (including 8 pages of appendix), 10 figures and 2 table

    Thermal phases of D1-branes on a circle from lattice super Yang-Mills

    Get PDF
    We report on the results of numerical simulations of 1+1 dimensional SU(N) Yang-Mills theory with maximal supersymmetry at finite temperature and compactified on a circle. For large N this system is thought to provide a dual description of the decoupling limit of N coincident D1-branes on a circle. It has been proposed that at large N there is a phase transition at strong coupling related to the Gregory-Laflamme (GL) phase transition in the holographic gravity dual. In a high temperature limit there was argued to be a deconfinement transition associated to the spatial Polyakov loop, and it has been proposed that this is the continuation of the strong coupling GL transition. Investigating the theory on the lattice for SU(3) and SU(4) and studying the time and space Polyakov loops we find evidence supporting this. In particular at strong coupling we see the transition has the parametric dependence on coupling predicted by gravity. We estimate the GL phase transition temperature from the lattice data which, interestingly, is not yet known directly in the gravity dual. Fine tuning in the lattice theory is avoided by the use of a lattice action with exact supersymmetry.Comment: 21 pages, 8 figures. v2: References added, two figures were modified for clarity. v3: Normalisation of lattice coupling corrected by factor of two resulting in change of estimate for c_cri

    Diabetes and Driving

    Get PDF
    Of the nearly 19 million people in the U.S. with diagnosed diabetes (1), a large percentage will seek or currently hold a license to drive. For many, a driver's license is essential to work; taking care of family; securing access to public and private facilities, services, and institutions; interacting with friends; attending classes; and/or performing many other functions of daily life. Indeed, in many communities and areas of the U.S. the use of an automobile is the only (or the only feasible or affordable) means of transportation available. There has been considerable debate whether, and the extent to which, diabetes may be a relevant factor in determining driver ability and eligibility for a license. This position statement addresses such issues in light of current scientific and medical evidence. Sometimes people with a strong interest in road safety, including motor vehicle administrators, pedestrians, drivers, other road users, and employers, associate all diabetes with unsafe driving when in fact most people with diabetes safely operate motor vehicles without creating any meaningful risk of injury to themselves or others. When legitimate questions arise about the medical fitness of a person with diabetes to drive, an individual assessment of that person's diabetes management—with particular emphasis on demonstrated ability to detect and appropriately treat potential hypoglycemia—is necessary in order to determine any appropriate restrictions. The diagnosis of diabetes is not sufficient to make any judgments about individual driver capacity. This document provides an overview of existing licensing rules for people with diabetes, addresses the factors that impact driving for this population, and identifies general guidelines for assessing driver fitness and determining appropriate licensing restrictions

    Baryonic Popcorn

    Full text link
    In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti-ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.Comment: v3, 80 pages, 18 figures, footnotes 5 and 7 added, version to appear in the JHE

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients

    Get PDF
    Purpose: Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Methods: Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent 18F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of 18F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). Results: The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p < 0.001). The TF-corrected mean SUV in the controls was 2.24 ± 0.29 and 3.24 ± 0.84 in IPF patients (p < 0.001). Conclusion: IPF patients have increased pulmonary uptake of 18F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. © 2013 The Author(s)

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Determinants of immigration strategies in male crested macaques (Macaca nigra).

    Get PDF
    Immigration into a new group can produce substantial costs due to resistance from residents, but also reproductive benefits. Whether or not individuals base their immigration strategy on prospective costbenefit ratios remains unknown. We investigated individual immigration decisions in crested macaques, a primate species with a high reproductive skew in favour of high-ranking males. We found two different strategies. Males who achieved low rank in the new group usually immigrated after another male had immigrated within the previous 25 days and achieved high rank. They never got injured but also had low prospective reproductive success. We assume that these males benefitted from immigrating into a destabilized male hierarchy. Males who achieved high rank in the new group usually immigrated independent of previous immigrations. They recieved injuries more frequently and therefore bore immigration costs. They, however, also had higher reproductive success prospects. We conclude that male crested macaques base their immigration strategy on relative fighting ability and thus potential rank in the new group i.e. potential reproductive benefits, as well as potential costs of injury
    corecore