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Abstract Silver microparticles (ca. 1| wm average size clus-
tered into cage-like aggregates of 1020 wm diameter) are
shown to adhere to a glassy carbon electrode surface to give
voltammetric current responses, which are considerably
enhanced/stabilised when applying a coating with a molecular-
ly rigid polymer of intrinsic microporosity (PIM-EA-TB). In
preliminary voltammetric experiments characteristic Ag(0/1)
surface oxidation and back-reduction processes are observed
in aqueous phosphate buffer (associated with silver phosphate
layer formation on the silver surface). In contrast to the oxida-
tion, which is dominated by a nucleation process causing a
sharp well-defined current signal, for the back-reduction sto-
chastic current responses are observed possibly associated with
density fluctuations in the surrounding liquid phase
(“Brownian activation”) as an essential part of the mechanism
of conversion of surface-oxidised silver back to silver metal.
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Introduction

Voltammetric analysis of microparticles [ 1] has been developed
as analytical tool in the study of redox-active materials which
are “mechanically attached” [2] or adhered [3] or simply depos-
ited from solution onto suitable electrode surfaces. For silver-
based materials, voltammetric microparticle analysis has been
applied to silver tarnish products [4]and silver alloys [5]. In
recent work on silver nanoparticle electrochemistry in solution,
the “impact” of these nanoparticles [6] and the resulting redox
conversion [7] were employed to obtain nanoparticle size,
shape [8], and reactivity [9] information. Due to the small size
of these nanoparticles (and the appropriate choice of reaction
conditions) complete/quantitative conversion of silver to solu-
ble or insoluble species is usually possible [10]. In contrast, for
macroscopic silver samples, for example a silver wire or silver-
coated textiles, in contact to a glassy carbon electrode surface
[11], more complex behaviour has been reported with incom-
plete conversion and formation of an electrically insulating lay-
er between silver metal and electrode surface. The electrical
contact of metallic silver to the underlying glassy carbon elec-
trode has been shown to be broken during oxidation when an
insulating film is produced. As a result, only a small amount of
the available silver was oxidised [11]. The back-reduction to
metallicsilver was suggested to be associated with nucleation of
silver metal on glassy carbon and a “re-connection” from glassy
carbon to the metallic silver-coated textile. Very similar pro-
cesses are observed here for silver microparticles immobilised
at a glassy carbon electrode surface and immersed in aqueous
electrolyte media.

An intrinsically microporous polymer coating is introduced
to improve the microparticle voltammetry experiment by
avoiding microparticle loss or dislodgement during immer-
sion or during potential cycling. This can be crucial for exam-
ple for application in electrocatalysis where microparticles
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have to remain in contact to the electrode surface.
Microparticles have to withstand significant mechanical
forces during wetting (during immersion) and during drying
(for re-use). Figure 1 shows a schematic drawing of a silver
microparticle immobilised at a glassy carbon electrode sur-
face. When in the reduced form, the metallic silver makes
electrical contact to the glassy carbon. However, when
oxidised, the silver is coated with an insulator and electrically
disconnected. The silver microparticles are studied here when
mechanically “fixed” by application of an intrinsically micro-
porous polymer (see PIM-EA-TB in Fig. 1b).

The application of a polymer of intrinsic microporosity
(PIM) as new class of molecularly rigid and microporous
ion-conducting materials in electrochemistry has been sug-
gested recently [12]. It has been demonstrated that metal nano-
particle catalysts can be PIM-coated and thereby protected
against poisoning [13] and against detrimental loss and corro-
sion processes [14]. Here, we employ an intrinsically micro-
porous polymer (PIM) material based on an ethano-
anthracene (EA) building block that was synthesised
employing a Troger base (TB) method (PIM-EA-TB [15],
see molecular structure in Fig. 1b). This polymer material
exhibits 70 kDa average molecular weight and N,-adsorption
surface area of typically 1027 m*> g ' [15]. The inherent mi-
croporosity of PIM-EA-TB allows ion and small molecule
transport without inhibiting the electrode reaction [16]. The
rigid molecular structure ensures a stable attachment of the
microparticles to the electrode surface as well as sufficient
access of electrolyte through the microporous film.

In this study, silver microparticles are investigated at glassy
carbon electrode surfaces and when immersed into aqueous
phosphate buffer solution. During oxidation, silver micropar-
ticles are shown to only react partially (similar to silver wire in
contact to glassy carbon [11]) due to surface coating with an
insulating silver phosphate film. The process is chemically
reversible, and after back reduction, the silver microparticles
remain at the electrode surface (protected by a PIM-EA-TB
film). Stochastic events during the reduction are suggested to
be associated with activation by interfacial momentum trans-
fer from Brownian motion in the liquid phase.

Experimental

Chemical reagents Chloroform, isopropanol, sodium hy-
droxide, and phosphoric acid (85%) were purchased from
Aldrich and used without further purification. PIM-EA-TB
was prepared following a literature recipe [17]. Solutions were
prepared with filtered and deionised water of resistivity
18.2 M{2 cm from a Thermo Scientific water purification sys-
tem (ELGA).

Instrumentation A pAutolab III system (Ecochemie, NL)
was employed for electrochemical measurements in a
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Fig. 1 a Schematic drawing of silver microparticles deposited onto a
working electrode with (i) oxidation leading to formation of an
insulating coating and (ii) back-reduction restoring the metallic
electrode—silver contact. b Molecular structure of the polymer of
intrinsic microporosity PIM-EA-TB that was used to coat and stabilise
the silver microparticle—electrode contact

conventional three-clectrode cell with a platinum wire counter
electrode and a KCl-saturated calomel (SCE) reference
(Radiometer, Kopenhagen). All experiments were performed
with a 3-mm-diameter glassy carbon electrode (Bioanalytical
Systems, IN, USA). Morphology of the silver sample was
analysed with a JEOL FESEM6301F scanning electron mi-
croscope (SEM).

Silver microparticles synthesis The synthesis of Ag micro-
particles is based on the non-hydrolytic sol-gel method [18, 19]
that has been recently applied for the synthesis of Ag antimicro-
bial coatings [20, 21]. Briefly, 642 mg of silver acetate (99%,
Aldrich) along with 20 cm® of benzylamine (99%, Aldrich)
were used for the synthesis of the particles. The result mixture
was transferred into a stainless steel autoclave and heated at
200 °C for 48 h. The resulting suspension was centrifuged and
the silver microparticles separated as precipitate, thoroughly
washed with ethanol, and subsequently dried in air at 70 °C.

Procedures for electrode preparation Electrodes were pre-
pared by drop casting. A weight of 4 mg of Ag microparticles
was dispersed in 1 mL of isopropanol. After sonication for
15 min, the prepared suspension was loaded onto a glassy
carbon (GC) disk electrode with a diameter of 3 mm. The
silver layer was allowed to dry under ambient conditions be-
fore electrochemical measurements. The PIM-Ag samples
were prepared by coatings with PIM-EA-TB on Ag. A
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solution of 1 mg mL™' PIM-EA-TB in chloroform was ap-
plied directly onto the Ag microparticle layer followed by
drying under ambient conditions.

Results and discussion

Initial experiments were performed with 2 pg silver micropar-
ticles (previously synthesised for application as antimicrobial
agent [20, 21], see Fig. 2) drop-cast deposited onto a glassy
carbon electrode surface and immersed in aqueous 0.1 M
phosphate buffer pH 12. Figure 3a shows voltammograms
with an oxidation response at 0.26 V vs. SCE. Silver has been
reported to undergo oxidation (anodic dissolution) in neutral
aqueous phosphate buffer media to switch from Ag(0) to
Ag(I) accompanied by formation of poorly soluble phosphate
films [11, 22, 23] (see Eq. 1). This equation is here tentatively
assigned to the process observed in Fig. 3, although the true
chemical nature of “Ag;PO4(s)” under these conditions may
be more complicated.

3Ag(m) + HPO,> (aq)2Ag;PO4(s) + H' (aq) + 3¢~ (1)

Acc.V. S agn
5.00kV4:0, 5000%

el WD —————{ 10um
BE -5:87 USTC

R

Fig. 2 Scanning electron micrographs at a lower (x5000) and b higher
(%20000) magnification showing silver microparticle aggregates

The area under the oxidation peak suggests approximately
5 uC charge has passed, which corresponds to only 0.2% of
the silver present. When applying a film of 4 pg PIM-EA-TB
from a chloroform solution over the silver microparticles on
the glassy carbon surface, the oxidation signal in the voltam-
mogram can be improved by one order of magnitude in terms
of charge (see Fig. 3a). The PIM-EA-TB polymer is proposed
to act here as a porous matrix that allows oxidation and reduc-
tion to occur whilst stopping losses due to dislodged silver
microparticles. As a result, voltammetric responses for the
silver microparticles are more stable and repeatable. Within
the potential range studied here PIM-EA-TB has no direct
electrochemical activity [13, 14] and it can be considered both
cation and anion conducting [15]. Generally, with the PIM-
EA-TB coating applied features such as the position of oxida-
tion and back-reduction voltammetric responses are main-
tained and also the complex peak shape observed during the
reduction is retained. Figure 3b shows how the amount of

a
20+ () —Gc
(i) —— GC-Ag
(ili) —— GC-Ag-PIM 4 pg
10 4
<
=
~~
~ 04
g:: AW 4
(0]
(ii)
-104 (ii)
12 08 04 00 04 08
E/Vvs. SCE
b
20 -
10
3
~ 0+
~ () —Ag
(ii) Ag-PIM 1 g
-104 (i) —— Ag-PIM 2 pg
(iv)—— Ag-PIM 3 ug
(V) ——Ag-PIM 4 pg
(Vi)—— Ag-PIM 5 pg
20—
-0.4 0.2 0.0 0.2 0.4 0.6

E/Vwvs. SCE

Fig. 3 a Cyclic voltammograms (scan rate 50 mVs ') for a micro-silver
deposit on glassy carbon immersed in aqueous 0.1 M PBS pH 12 for (i)
the bare glassy carbon, (i7) 2 pug micro-silver on glassy carbon, and (iif)
with a 4 ug PIM film applied. b As above, but with different Ag to PIM
ratios
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PIM-EA-TB deposited over the electrode surface affects the
voltammetric responses. With approximately 4 pug polymer, a
relatively stable/repeatable signal is obtained. Excess PIM-
EA-TB leads to lowering of current responses. Therefore, in
the following experiments, this amount of 4 pg polymer coat-
ing is kept constant.

Figure 4a demonstrates the effect of the amount of silver
microparticles on voltammetric responses. The magnitude of
both oxidation and back-reduction signals increases with the
amount of silver deposited. This as well as the change in capac-
itive background current suggests that the silver microparticles
are well connected in the potential range negative of the oxida-
tion process. However, the trend is non-linear and possibly con-
nected to factors such as packing of silver microparticles and
importantly the ratio of Ag to PIM. When changing the potential
scan rate (Fig. 4b), more complex behaviour is observed. The
anodic process results in the very sharp increase in the current at
0.26 V vs. SCE independent of the scan rate, which is believed
to be associated with a nucleation of silver phosphate (eq. 1) on
the silver surface. Upon scanning the potential negative
the reduction peak appears complex and random without
well-defined peak potential and/or onset potential. With in-
creased scan rate, peaks move in average to more negative po-
tentials. When adding nitrate into the solution (Fig. 4c), the
well-known silver-catalysed two-electron reduction of nitrate
to nitrite (Eq. 2 [24, 25]) is observed.

NO,-(aq) + OH (aq)2NO;-(aq) + H" (aq)2e" (2)

The limiting current for the catalytic nitrate reduction is
approximately linear to the nitrate concentration in the 1 to
100 mM concentration range indicative of a process that is not
impeded by the PIM-EA-TB film coating. This behaviour
confirms that the silver microparticles are active when
immobilised on the glassy carbon electrode surface.

When investigating the voltammetric response in different
types of electrolyte media but at constant pH, significant
changes are observed. In aqueous 0.01 M NaOH at pH 12,
only a small oxidation response is seen possibly associated
with the formation of an oxide coating (see Fig. 5a). During
the reverse potential sweep, very sharp and stochastic reduc-
tion peaks are observed. In aqueous phosphate buffer at
pH 12, a lower concentration (10 mM buffer) appears to lead
to enhanced (continued) dissolution during oxidation. At a
much higher buffer concentration (500 mM buffer), oxidation
currents are significantly lowered. At an intermediate concen-
tration of 100 mM phosphate buffer, a significant oxidation
peak is observed at 0.3 V vs. SCE with a corresponding re-
duction peak at —0.1 V vs. SCE. The effect of the phosphate
buffer concentration on the voltammetric peak suggests a
maximised response at 0.1 M concentration mirroring the re-
sults reported recently for other types of silver/glassy carbon

@ Springer

contacts [19]. The underlying reasons are likely to be associ-
ated with a trade-off between electrolyte conductivity and sol-
ubility and will need further study.
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Fig. 4 a Cyclic voltammograms (scan rate 20 mV s ) for 2, 4, or 6 pg
micro-silver deposited onto glassy carbon coated with 4 pg PIM and
immersed into aqueous 0.1 M PBS pH 12. b As above for 2 pg micro-
silver at different scan rates. ¢ Cyclic voltammograms (scan rate
20 mV s 1) for 2 pg micro-silver in 0.1 M PBS pH 12 with (i) 0, (i) 1,
(i1i) 10, and (iv) 100 mM NaNO; added
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Fig. 5 a Cyclic voltammogram (scan rate 50 mV s ') for 2 ug micro-
silver deposited onto glassy carbon coated with 4 g PIM and immersed
into aqueous pH 12 solution as a function of ionic strength. b Multi-cycle
experiment (scan rate 50 mVs ") for pH 12 NaOH solution

For all concentrations of phosphate buffer, significant random-
ness in the reduction signal is observed. This is most clearly seen
for experiments in 0.01 M NaOH. Figure 5b shows a multi-cycle
voltammetric experiment performed in pH 12 NaOH solution
showing the stochastic nature of the reduction current peaks,
which occur around 0.0 V vs. SCE and with an average charge
complementary to that observed for the oxidation peak, however,
in short “bursts” which may be linked to individual particles or
regions on the electrode surface “re-connecting” to the silver
microparticles. The trigger responsible for these processes could
be associated at least in part with a density fluctuation in the liquid
phase adjacent to the electrode surface or “Brownian activation”.

This type of phenomenon is closely linked to Brownian
motion and the associated diffusional transport in the liquid
phase. Brownian motion [26] as proposed by Einstein and by
von Smoluchowski [27] is induced by natural fluctuations in
the density of the liquid, which are comparable to the more
collective fluctuations caused by lattice phonons in solid mate-
rials. Artificial Brownian motors [28] are of interest in

nanoscale systems that exploit these density fluctuations.
Brownian motion of objects at liquid/solid interfaces can affect
the rate of physical processes such as electron transfer, but these
effects require micron-sized particles to become apparent. The
idea of “Brownian activation” has been postulated previously
for example for the inter-nanoparticle electron transfer within
hybrid films of redox active TiO, nanoparticles [29]. Related
effects of Brownian motion at liquid/solid interfaces may also
play a role in the voltammetry of “impact” processes [30, 31]
where stochastic effects are assigned to bulk transport (motion)
rather than to surface processes (activation).

For cyclic voltammograms shown in Fig. Sa, nucleation pro-
cesses are believed to be responsible for the sharp oxidation
peak observed during the oxidation of silver microparticles in
the presence of phosphate buffer. In contrast, the reduction is
governed by a stochastic process with multiple events that occur
of a period of time. When scanning the potential of the electrode
more quickly, these current responses distribute to more nega-
tive potentials indicative either (i) of irreversible electron transfer
(microscopic) and/or (ii) irreversible activation of microparticles
(macroscopic). The stochastic nature of “Brownian activation”
is suggested to be associated with these processes but further
investigation of the mechanism will be necessary.

Summary and conclusion

Silver microparticle voltammetry experiments were per-
formed with the help of an intrinsically microporous polymer
film coating. The key findings are as follows:

(A) animproved voltammetric response for silver micropar-
ticles was observed when deposits at the electrode sur-
face are mechanically stabilised against loss and dis-
lodgment with the PIM-EA-TB coating and

(B) the voltammetric characteristics (apart from the magni-
tude of the current) for the silver microparticles im-
mersed in aqueous electrolyte media at pH 12 are not
affected by the PIM-EA-TB polymer coating for the
oxidation of silver, the back reduction to silver metal,
and for the catalytic reduction of nitrate to nitrite; the
PIM-EA-TB film is sufficiently permeable for both cat-
ions and anions under these conditions;

(C) for the Ag(I/0) reduction, the stochastic nature of
voltammetric current responses suggests that natural
density fluctuations at the glassy carbon | silver micro-
particle interface (Brownian activation) could be the
trigger to voltammetric responses.

These are preliminary findings and further work and opti-
misation of processes and peak appearances will be possible
adjusting parameters such as ionic strength, pH, and phos-
phate concentration. Potential applications of the stochastic
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voltammetric response may be in electroanalysis (e.g. when
traces of chemical species could trigger or suppress the current
spikes). The beneficial application of PIM-EA-TB as an in-
trinsically microporous coating in microparticle voltammetry
could be of interest in a wider range of electroanalytical ap-
plications and in particular in electrocatalysis with
immobilised microparticle catalysts.
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