We report on the results of numerical simulations of 1+1 dimensional SU(N)
Yang-Mills theory with maximal supersymmetry at finite temperature and
compactified on a circle. For large N this system is thought to provide a dual
description of the decoupling limit of N coincident D1-branes on a circle. It
has been proposed that at large N there is a phase transition at strong
coupling related to the Gregory-Laflamme (GL) phase transition in the
holographic gravity dual. In a high temperature limit there was argued to be a
deconfinement transition associated to the spatial Polyakov loop, and it has
been proposed that this is the continuation of the strong coupling GL
transition. Investigating the theory on the lattice for SU(3) and SU(4) and
studying the time and space Polyakov loops we find evidence supporting this. In
particular at strong coupling we see the transition has the parametric
dependence on coupling predicted by gravity. We estimate the GL phase
transition temperature from the lattice data which, interestingly, is not yet
known directly in the gravity dual. Fine tuning in the lattice theory is
avoided by the use of a lattice action with exact supersymmetry.Comment: 21 pages, 8 figures. v2: References added, two figures were modified
for clarity. v3: Normalisation of lattice coupling corrected by factor of two
resulting in change of estimate for c_cri