38 research outputs found

    Discrimination of native wood charcoal by infrared spectroscopy

    Full text link
    Brazil is one of the largest producers and consumers of charcoal in the world. About 50% of its charcoal comes from native forests, with a large part coming from unsustainable operations. The anatomic identification of charcoal is subjective; an instrumental technique would facilitate the monitoring of forests. This study aimed to verify the feasibility of using medium and near infrared reflectance spectroscopy to discriminate native (ipê) from plantation charcoals (eucalyptus). Principal Components Analysis, followed by Discriminant Factorial Analysis formed two different groups indicated by Mahalanobis distances of 40.6 and 80.3 for near and mid infrared, respectively. Validation of the model showed 100% efficacy. (Résumé d'auteur

    Carotenoids in Cassava Roots

    Get PDF
    Vitamin A deficiency (VAD) is a preventable tragedy that affects millions of people, particularly in sub-Saharan Africa. A large proportion of these people rely on diets based on cassava as a source of calories. During the last two decades, significant efforts have been made to identify sources of germplasm with high pro-vitamin A carotenoids (pVAC) and then use them to develop cultivars with a nutritional goal of 15 μg g−1 of β-carotene (fresh weight basis) and good agronomic performance. The protocols for sampling roots and quantifying carotenoids have been improved. Recently, NIR predictions began to be used. Retention of carotenoids after different root processing methods has been measured. Bioavailability studies suggest high conversion rates. Genetic modification has also been achieved with mixed results. Carotenogenesis genes have been characterized and their activity in roots measured

    Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits.

    Get PDF
    Coffee fruits grown in shade are characterized by larger bean size than those grown under full-sun conditions. The present study assessed the effects of shade on bean characteristics and sugar metabolism by analyzing tissue development, sugar contents, activities of sucrose metabolizing enzymes and expression of sucrose synthase-encoding genes in fruits of coffee (Coffea arabica L.) plants submitted to full-sun (FS) and shade (SH) conditions. Evolution of tissue fresh weights measured in fruits collected regularly from flowering to maturation indicated that this increase is due to greater development of the perisperm tissue in the shade. The effects of light regime on sucrose and reducing sugar (glucose and fructose) contents were studied in fresh and dry coffee beans. Shade led to a significant reduction in sucrose content and to an increase in reducing sugars. In pericarp and perisperm tissues, higher activities of sucrose synthase (EC 2.4.1.13) and sucrose-phosphate synthase (SPS: EC 2.4.1.14) were detected at maturation in the shade compared with full sun. These two enzymes also had higher peaks of activities in developing endosperm under shade than in full sun. It was also noted that shade modified the expression of SUS-encoding genes in coffee beans; CaSUS2 gene transcripts levels were higher in SH than in FS. As no sucrose increase accompanied these changes, this suggests that sucrose metabolism was redirected to other metabolic pathways that need to be identified

    High-throughput phenotyping and improvements in breeding cassava for increased carotenoids in the roots

    Full text link
    Past research developed reliable equations to base selections for high β-carotene on near-infrared spectroscopy (NIR) predictions (100 genotypes d−1) rather than with high-performance liquid chromatography (HPLC) (<10 samples d−1). During recent harvest, CIAT made selections based on NIR predictions for the first time. This innovation produced valuable information that will help other cassava (Manihot esculenta Crantz) breeding programs. A total of 284 samples were analyzed with NIR and HPLC for total β-carotene (TBC) and by the oven method for dry matter content (DMC). Results indicated that NIR reliably predicted TBC and DMC. In addition, 232 genotypes grown in preliminary yield trials (PYTs) were harvested at 8.5 and 10.5 mo after planting (one plant per genotype and age) and root quality traits analyzed (by NIR only). Repeatability of results at the two ages was excellent, suggesting reliable results from NIR. In contrast to previous reports, age of the plant did not influence carotenoids content in the roots. The availability of a high-throughput NIR protocol allowed comparing results (for the first time) from seedling and cloned plants from the same genotype. Results showed very little relationship for DMC between seedling and cloned plants (R2 = 0.09). There was a much better association for TBC (R2 = 0.48) between seedling and cloned plants. It is postulated that variation in the environmental conditions when seedling and cloned plants (from the same genotype) may be responsible for these weak associations. Important changes in selection strategies have been implemented to overcome problems related to a lengthy harvesting season. (Résumé d'auteur
    corecore