474 research outputs found

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    Data analysis issues for allele-specific expression using Illumina's GoldenGate assay.

    Get PDF
    BACKGROUND: High-throughput measurement of allele-specific expression (ASE) is a relatively new and exciting application area for array-based technologies. In this paper, we explore several data sets which make use of Illumina's GoldenGate BeadArray technology to measure ASE. This platform exploits coding SNPs to obtain relative expression measurements for alleles at approximately 1500 positions in the genome. RESULTS: We analyze data from a mixture experiment where genomic DNA samples from pairs of individuals of known genotypes are pooled to create allelic imbalances at varying levels for the majority of SNPs on the array. We observe that GoldenGate has less sensitivity at detecting subtle allelic imbalances (around 1.3 fold) compared to extreme imbalances, and note the benefit of applying local background correction to the data. Analysis of data from a dye-swap control experiment allowed us to quantify dye-bias, which can be reduced considerably by careful normalization. The need to filter the data before carrying out further downstream analysis to remove non-responding probes, which show either weak, or non-specific signal for each allele, was also demonstrated. Throughout this paper, we find that a linear model analysis of the data from each SNP is a flexible modelling strategy that allows for testing of allelic imbalances in each sample when replicate hybridizations are available. CONCLUSIONS: Our analysis shows that local background correction carried out by Illumina's software, together with quantile normalization of the red and green channels within each array, provides optimal performance in terms of false positive rates. In addition, we strongly encourage intensity-based filtering to remove SNPs which only measure non-specific signal. We anticipate that a similar analysis strategy will prove useful when quantifying ASE on Illumina's higher density Infinium BeadChips.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Family day care educators : an exploration of their understanding and experiences promoting children\u27s social and emotional wellbeing

    Full text link
    This study aimed to explore family day care (FDC) educators&rsquo; knowledge of child social and emotional wellbeing and mental health problems, the strategies used to promote children&rsquo;s wellbeing, and barriers and opportunities for promoting children&rsquo;s social and emotional wellbeing. Thirteen FDC educators participated in individual semi-structured interviews. FDC educators were more comfortable defining children&rsquo;s social and emotional wellbeing than they were in identifying causes and early signs of mental health problems. Strategies used to promote children&rsquo;s mental health were largely informal and dependent on educator skills and capacities rather than a systematic scheme-wide approach. Common barriers to mental health promotion were limited financial resources, a need for more training and hesitance raising child mental health issues with parents. There is a need to build FDC educators&rsquo; knowledge of child social and emotional wellbeing and for tailored mental health promotion strategies in FDC.<br /

    Gene Expression in Chicken Reveals Correlation with Structural Genomic Features and Conserved Patterns of Transcription in the Terrestrial Vertebrates

    Get PDF
    Background - The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. Methodology/Principal Findings - We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. Conclusions - The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolutio

    The FUSE binding proteins FBP1 and FBP3 are potential c-myc regulators in renal, but not in prostate and bladder cancer

    Get PDF
    BACKGROUND: The three far-upstream element (FUSE) binding proteins (FBP1, FBP2, and FBP3) belong to an ancient family of single-stranded DNA binding proteins which are required for proper regulation of the c-myc proto-oncogene. Whereas it is known that c-myc alterations play a completely different role in various carcinomas of the urogenital tract, the relevance of FBPs is unclear. Methods: FBP1, FBP3 and c-myc expression was studied in 105 renal cell, 95 prostate and 112 urinary bladder carcinomas by immunohistochemistry using tissue microarrays. High rates of FBP1 and FBP3 expression were observed in all cancer types. RESULTS: There was a concomitant up-regulation of FBP1 and FBP3 in renal cell and prostate carcinomas (p<0.001 both). C-myc expression was detectable in 21% of prostate, 30% of renal and 34% of urothelial carcinomas. Interestingly, strong FBP1 and FBP3 expression was associated with c-myc up-regulation in clear cell renal cell carcinomas (p<0.001 and 0.05 resp.), but not in bladder or prostate cancer. CONCLUSIONS: The correlation between FBP1/FBP3, c-myc and high proliferation rate in renal cell carcinoma provides strong in vivo support for the suggested role of FBP1 and FBP3 as activators of c-myc. The frequent up-regulation of FBP1 and FBP3 in urothelial and prostate carcinoma suggests that FBPs also have an important function in gene regulation of these tumors

    Ribosomal DNA Deletions Modulate Genome-Wide Gene Expression: “rDNA–Sensitive” Genes and Natural Variation

    Get PDF
    The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation

    Social Justice and Technocracy: Tracing the Narratives of Inclusive Education in the United States

    Get PDF
    Over the past two decades, the percentage of American students with disabilities educated in general classrooms with their nondisabled peers has risen by approximately fifty percent. This gradual but steady policy shift has been driven by two distinct narratives of organisational change. The social justice narrative espouses principles of equality and caring across human differences. The narrative of technocracy creates top-down, administrative pressure through hierarchical systems based on quantitative performance data. This article examines these two primary policy narratives of inclusive education in the United States, exploring the conceptual features of each and initiating an analysis of their application in the public schools
    corecore