1,581 research outputs found

    Cosmological Evolution of Global Monopoles

    Full text link
    We investigate the cosmological evolution of global monopoles in the radiation dominated (RD) and matter dominated (MD) universes by numerically solving field equations of scalar fields. It is shown that the global monopole network relaxes into the scaling regime, unlike the gauge monopole network. The number density of global monopoles is given by n(t)(0.43±0.07)/t3n(t) \simeq (0.43\pm0.07) / t^{3} during the RD era and n(t)(0.25±0.05)/t3n(t) \simeq (0.25\pm0.05) / t^{3} during the MD era. Thus, we have confirmed that density fluctuations produced by global monopoles become scale invariant and are given by δρ7.2(5.0)σ2/t2\delta \rho \sim 7.2(5.0) \sigma^{2} / t^{2} during the RD (MD) era, where σ\sigma is the breaking scale of the symmetry.Comment: 6 pages, 2 figures, to appear in Phys. Rev. D (R

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.

    On the gravitational, dilatonic and axionic radiative damping of cosmic strings

    Full text link
    We study the radiation reaction on cosmic strings due to the emission of dilatonic, gravitational and axionic waves. After verifying the (on average) conservative nature of the time-symmetric self-interactions, we concentrate on the finite radiation damping force associated with the half-retarded minus half-advanced ``reactive'' fields. We revisit a recent proposal of using a ``local back reaction approximation'' for the reactive fields. Using dimensional continuation as convenient technical tool, we find, contrary to previous claims, that this proposal leads to antidamping in the case of the axionic field, and to zero (integrated) damping in the case of the gravitational field. One gets normal positive damping only in the case of the dilatonic field. We propose to use a suitably modified version of the local dilatonic radiation reaction as a substitute for the exact (non-local) gravitational radiation reaction. The incorporation of such a local approximation to gravitational radiation reaction should allow one to complete, in a computationally non-intensive way, string network simulations and to give better estimates of the amount and spectrum of gravitational radiation emitted by a cosmologically evolving network of massive strings.Comment: 48 pages, RevTex, epsfig, 1 figure; clarification of the domain of validity of the perturbative derivation of the string equations of motion, and of their renormalizabilit

    Lagrangian evolution of global strings

    Full text link
    We establish a method to trace the Lagrangian evolution of extended objects consisting of a multicomponent scalar field in terms of a numerical calculation of field equations in three dimensional Eulerian meshes. We apply our method to the cosmological evolution of global strings and evaluate the energy density, peculiar velocity, Lorentz factor, formation rate of loops, and emission rate of Nambu-Goldstone (NG) bosons. We confirm the scaling behavior with a number of long strings per horizon volume smaller than the case of local strings by a factor of \sim 10. The strategy and the method established here are applicable to a variety of fields in physics.Comment: 5 pages, 2 figure

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Equation of state of cosmic strings with fermionic current-carriers

    Get PDF
    The relevant characteristic features, including energy per unit length and tension, of a cosmic string carrying massless fermionic currents in the framework of the Witten model in the neutral limit are derived through quantization of the spinor fields along the string. The construction of a Fock space is performed by means of a separation between longitudinal modes and the so-called transverse zero energy solutions of the Dirac equation in the vortex. As a result, quantization leads to a set of naturally defined state parameters which are the number densities of particles and anti-particles trapped in the cosmic string. It is seen that the usual one-parameter formalism for describing the macroscopic dynamics of current-carrying vortices is not sufficient in the case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected, comments and references added. Accepted for publication in Phys. Rev.

    Constraints on neutrino oscillation parameters from the SNO salt phase data

    Get PDF
    The physics implications of the just published salt phase data from the SNO experiment are examined. The effect of these data on the allowed ranges of the solar neutrino oscillation parameters, \Delta_m^2_{21} and sin2θ12\sin^2\theta_{12}, are studied in the cases of two- and three- neutrino mixing. In the latter case we derive an upper limit on the angle θ13\theta_{13}. Constraints on the solar νe\nu_e transitions into a mixture of active and sterile neutrinos are also presented. Finally, we give predictions for the day-night asymmetry in the SNO experiment, for the event rate in the BOREXINO and LowNu experiments, and discuss briefly the constraints on the solar neutrino oscillation parameters which can be obtained with prospective KamLAND data.Comment: Version to appear in PL

    Dilatonic current-carrying cosmic strings

    Full text link
    We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely the energy per unit length U and the tension T, by picking a privileged spacelike or timelike coordinate direction; in the latter case, a phase frequency threshold occurs that is similar to what is found in ordinary neutral current-carrying cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e. on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium configuration, also known as vortons, whose stability, depending on the very short distance (unknown) physics, can lead to catastrophic consequences on the evolution of the Universe.Comment: 10 pages, ReVTeX, 2 figures, minor typos corrected. This version to appear in Phys. Rev.

    Understanding the Emergent Structure of Competency Centers in Post-implementation Enterprise Systems

    Get PDF
    Part 3: Structures and NetworksInternational audiencePrior research provides conflicting insights about the link between investment in enterprise systems and firm value and in the ES governance mechanisms. The literature generally suggests that management should cultivate its technical and organizational expertise to derive value from currently deployed Enterprise Systems (ES) [8]. In the realm of practice, ERP vendors and configuration/integration partners strongly recommend the creation of an organizational structure to govern the ERP implementation and post-implementation process to improve project success and extract greater value from the ES investment. The ES literature, while unclear on the formation, and functioning of ES governance units, suggests the need for formal and fixed governance structures. This research utilizes Deleuze’s assemblage theory and emergence theory to explain the genesis and evolution of the governing ‘structure’ known as the Competency Center (CC). Our results illustrate the business needs driving the structuring processes behind the CC, are also those that lead to unintended and destabilizing outcomes. Whether the CC ‘assemblage’ survives to provide value depends on how the emergent issues are handled and how the assemblages are “positioned”. This research suggests effective ES governance is not derived from a prescribed step-wise process yielding formal structures, but rather form an organic process of assemblage

    Current-carrying cosmic string loops 3D simulation: towards a reduction of the vorton excess problem

    Full text link
    The dynamical evolution of superconducting cosmic string loops with specific equations of state describing timelike and spacelike currents is studied numerically. This analysis extends previous work in two directions: first it shows results coming from a fully three dimensional simulation (as opposed to the two dimensional case already studied), and it now includes fermionic as well as bosonic currents. We confirm that in the case of bosonic currents, shocks are formed in the magnetic regime and kinks in the electric regime. For a loop endowed with a fermionic current with zero-mode carriers, we show that only kinks form along the string worldsheet, therefore making these loops slightly more stable against charge carrier radiation, the likely outcome of either shocks or kinks. All these combined effects tend to reduce the number density of stable loops and contribute to ease the vorton excess problem. As a bonus, these effects also may provide new ways of producing high energy cosmic rays.Comment: 11 pages, RevTeX 4 format, 8 figures, submitted to PR
    corecore