1,581 research outputs found
Cosmological Evolution of Global Monopoles
We investigate the cosmological evolution of global monopoles in the
radiation dominated (RD) and matter dominated (MD) universes by numerically
solving field equations of scalar fields. It is shown that the global monopole
network relaxes into the scaling regime, unlike the gauge monopole network. The
number density of global monopoles is given by during the RD era and during the MD
era. Thus, we have confirmed that density fluctuations produced by global
monopoles become scale invariant and are given by during the RD (MD) era, where is the breaking
scale of the symmetry.Comment: 6 pages, 2 figures, to appear in Phys. Rev. D (R
Fermionic massive modes along cosmic strings
The influence on cosmic string dynamics of fermionic massive bound states
propagating in the vortex, and getting their mass only from coupling to the
string forming Higgs field, is studied. Such massive fermionic currents are
numerically found to exist for a wide range of model parameters and seen to
modify drastically the usual string dynamics coming from the zero mode currents
alone. In particular, by means of a quantization procedure, a new equation of
state describing cosmic strings with any kind of fermionic current, massive or
massless, is derived and found to involve, at least, one state parameter per
trapped fermion species. This equation of state exhibits transitions from
subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for
publication in Phys. Rev.
On the gravitational, dilatonic and axionic radiative damping of cosmic strings
We study the radiation reaction on cosmic strings due to the emission of
dilatonic, gravitational and axionic waves. After verifying the (on average)
conservative nature of the time-symmetric self-interactions, we concentrate on
the finite radiation damping force associated with the half-retarded minus
half-advanced ``reactive'' fields. We revisit a recent proposal of using a
``local back reaction approximation'' for the reactive fields. Using
dimensional continuation as convenient technical tool, we find, contrary to
previous claims, that this proposal leads to antidamping in the case of the
axionic field, and to zero (integrated) damping in the case of the
gravitational field. One gets normal positive damping only in the case of the
dilatonic field. We propose to use a suitably modified version of the local
dilatonic radiation reaction as a substitute for the exact (non-local)
gravitational radiation reaction. The incorporation of such a local
approximation to gravitational radiation reaction should allow one to complete,
in a computationally non-intensive way, string network simulations and to give
better estimates of the amount and spectrum of gravitational radiation emitted
by a cosmologically evolving network of massive strings.Comment: 48 pages, RevTex, epsfig, 1 figure; clarification of the domain of
validity of the perturbative derivation of the string equations of motion,
and of their renormalizabilit
Lagrangian evolution of global strings
We establish a method to trace the Lagrangian evolution of extended objects
consisting of a multicomponent scalar field in terms of a numerical calculation
of field equations in three dimensional Eulerian meshes. We apply our method to
the cosmological evolution of global strings and evaluate the energy density,
peculiar velocity, Lorentz factor, formation rate of loops, and emission rate
of Nambu-Goldstone (NG) bosons. We confirm the scaling behavior with a number
of long strings per horizon volume smaller than the case of local strings by a
factor of 10. The strategy and the method established here are
applicable to a variety of fields in physics.Comment: 5 pages, 2 figure
Quantum saturation and condensation of excitons in CuO: a theoretical study
Recent experiments on high density excitons in CuO provide evidence for
degenerate quantum statistics and Bose-Einstein condensation of this nearly
ideal gas. We model the time dependence of this bosonic system including
exciton decay mechanisms, energy exchange with phonons, and interconversion
between ortho (triplet-state) and para (singlet-state) excitons, using
parameters for the excitonic decay, the coupling to acoustic and low-lying
optical phonons, Auger recombination, and ortho-para interconversion derived
from experiment. The single adjustable parameter in our model is the
optical-phonon cooling rate for Auger and laser-produced hot excitons. We show
that the orthoexcitons move along the phase boundary without crossing it (i.e.,
exhibit a ``quantum saturation''), as a consequence of the balance of entropy
changes due to cooling of excitons by phonons and heating by the non-radiative
Auger two-exciton recombination process. The Auger annihilation rate for
para-para collisions is much smaller than that for ortho-para and ortho-ortho
collisions, explaining why, under the given experimental conditions, the
paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex,
figures available from G. Kavoulakis, Physics Department, University of
Illinois, Urban
Equation of state of cosmic strings with fermionic current-carriers
The relevant characteristic features, including energy per unit length and
tension, of a cosmic string carrying massless fermionic currents in the
framework of the Witten model in the neutral limit are derived through
quantization of the spinor fields along the string. The construction of a Fock
space is performed by means of a separation between longitudinal modes and the
so-called transverse zero energy solutions of the Dirac equation in the vortex.
As a result, quantization leads to a set of naturally defined state parameters
which are the number densities of particles and anti-particles trapped in the
cosmic string. It is seen that the usual one-parameter formalism for describing
the macroscopic dynamics of current-carrying vortices is not sufficient in the
case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected,
comments and references added. Accepted for publication in Phys. Rev.
Constraints on neutrino oscillation parameters from the SNO salt phase data
The physics implications of the just published salt phase data from the SNO
experiment are examined. The effect of these data on the allowed ranges of the
solar neutrino oscillation parameters, \Delta_m^2_{21} and
, are studied in the cases of two- and three- neutrino
mixing. In the latter case we derive an upper limit on the angle .
Constraints on the solar transitions into a mixture of active and
sterile neutrinos are also presented. Finally, we give predictions for the
day-night asymmetry in the SNO experiment, for the event rate in the BOREXINO
and LowNu experiments, and discuss briefly the constraints on the solar
neutrino oscillation parameters which can be obtained with prospective KamLAND
data.Comment: Version to appear in PL
Dilatonic current-carrying cosmic strings
We investigate the nature of ordinary cosmic vortices in some scalar-tensor
extensions of gravity. We find solutions for which the dilaton field condenses
inside the vortex core. These solutions can be interpreted as raising the
degeneracy between the eigenvalues of the effective stress-energy tensor,
namely the energy per unit length U and the tension T, by picking a privileged
spacelike or timelike coordinate direction; in the latter case, a phase
frequency threshold occurs that is similar to what is found in ordinary neutral
current-carrying cosmic strings. We find that the dilaton contribution for the
equation of state, once averaged along the string worldsheet, vanishes, leading
to an effective Nambu-Goto behavior of such a string network in cosmology, i.e.
on very large scales. It is found also that on small scales, the energy per
unit length and tension depend on the string internal coordinates in such a way
as to permit the existence of centrifugally supported equilibrium
configuration, also known as vortons, whose stability, depending on the very
short distance (unknown) physics, can lead to catastrophic consequences on the
evolution of the Universe.Comment: 10 pages, ReVTeX, 2 figures, minor typos corrected. This version to
appear in Phys. Rev.
Understanding the Emergent Structure of Competency Centers in Post-implementation Enterprise Systems
Part 3: Structures and NetworksInternational audiencePrior research provides conflicting insights about the link between investment in enterprise systems and firm value and in the ES governance mechanisms. The literature generally suggests that management should cultivate its technical and organizational expertise to derive value from currently deployed Enterprise Systems (ES) [8]. In the realm of practice, ERP vendors and configuration/integration partners strongly recommend the creation of an organizational structure to govern the ERP implementation and post-implementation process to improve project success and extract greater value from the ES investment. The ES literature, while unclear on the formation, and functioning of ES governance units, suggests the need for formal and fixed governance structures. This research utilizes Deleuze’s assemblage theory and emergence theory to explain the genesis and evolution of the governing ‘structure’ known as the Competency Center (CC). Our results illustrate the business needs driving the structuring processes behind the CC, are also those that lead to unintended and destabilizing outcomes. Whether the CC ‘assemblage’ survives to provide value depends on how the emergent issues are handled and how the assemblages are “positioned”. This research suggests effective ES governance is not derived from a prescribed step-wise process yielding formal structures, but rather form an organic process of assemblage
Current-carrying cosmic string loops 3D simulation: towards a reduction of the vorton excess problem
The dynamical evolution of superconducting cosmic string loops with specific
equations of state describing timelike and spacelike currents is studied
numerically. This analysis extends previous work in two directions: first it
shows results coming from a fully three dimensional simulation (as opposed to
the two dimensional case already studied), and it now includes fermionic as
well as bosonic currents. We confirm that in the case of bosonic currents,
shocks are formed in the magnetic regime and kinks in the electric regime. For
a loop endowed with a fermionic current with zero-mode carriers, we show that
only kinks form along the string worldsheet, therefore making these loops
slightly more stable against charge carrier radiation, the likely outcome of
either shocks or kinks. All these combined effects tend to reduce the number
density of stable loops and contribute to ease the vorton excess problem. As a
bonus, these effects also may provide new ways of producing high energy cosmic
rays.Comment: 11 pages, RevTeX 4 format, 8 figures, submitted to PR
- …
