910 research outputs found

    The Wide Area VISTA Extra-galactic Survey (WAVES)

    Get PDF
    The "Wide Area VISTA Extra-galactic Survey" (WAVES) is a 4MOST Consortium Design Reference Survey which will use the VISTA/4MOST facility to spectroscopically survey ~2million galaxies to rAB<22r_{\rm AB} < 22 mag. WAVES consists of two interlocking galaxy surveys ("WAVES-Deep" and "WAVES-Wide"), providing the next two steps beyond the highly successful 1M galaxy Sloan Digital Sky Survey and the 250k Galaxy And Mass Assembly survey. WAVES will enable an unprecedented study of the distribution and evolution of mass, energy, and structures extending from 1-kpc dwarf galaxies in the local void to the morphologies of 200-Mpc filaments at z1z\sim1. A key aim of both surveys will be to compare comprehensive empirical observations of the spatial properties of galaxies, groups, and filaments, against state-of-the-art numerical simulations to distinguish between various Dark Matter models

    Galaxy and Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies

    Get PDF
    The modification of star formation (SF) in galaxy interactions is a complex process, with SF observed to be both enhanced in major mergers and suppressed in minor pair interactions. Such changes likely to arise on short time-scales and be directly related to the galaxy–galaxy interaction time. Here we investigate the link between dynamical phase and direct measures of SF on different time-scales for pair galaxies, targeting numerous star- formation rate (SFR) indicators and comparing to pair separation, individual galaxy mass and pair mass ratio. We split our sample into the higher (primary) and lower (secondary) mass galaxies in each pair and find that SF is indeed enhanced in all primary galaxies but suppressed in secondaries of minor mergers. We find that changes in SF of primaries are consistent in both major and minor mergers, suggesting that SF in the more massive galaxy is agnostic to pair mass ratio. We also find that SF is enhanced/suppressed more strongly for short-duration SFR indicators (e.g. Hα), highlighting recent changes to SF in these galaxies, which are likely to be induced by the interaction. We propose a scenario where the lower mass galaxy has its SF suppressed by gas heating or stripping, while the higher mass galaxy has its SF enhanced, potentially by tidal gas turbulence and shocks. This is consistent with the seemingly contradictory observations for both SF suppression and enhancement in close pairs

    Galaxy And Mass Assembly (GAMA): A forensic SED reconstruction of the cosmic star-formation history and metallicity evolution by galaxy type

    Get PDF
    We apply the spectral energy distribution-fitting code ProSpect to multiwavelength imaging for \sim7,000 galaxies from the GAMA survey at z<0.06z<0.06, in order to extract their star-formation histories. We combine a parametric description of the star formation history with a closed-box evolution of metallicity where the present-day gas-phase metallicity of the galaxy is a free parameter. We show with this approach that we are able to recover the observationally-determined cosmic star formation history (CSFH), an indication that stars are being formed in the correct epoch of the Universe, on average, for the manner in which we are conducting SED fitting. We also show the contribution to the CSFH of galaxies of different present-day visual morphologies, and stellar masses. This analysis suggests that half of the mass in present-day elliptical galaxies was in place 11 Gyr ago, whereas in other morphological types the stellar mass formed later, up to 6 Gyr ago for present-day irregular galaxies. Similarly, the most massive galaxies in our sample were shown to have formed half their stellar mass by 10.5 Gyr ago, whereas the least massive galaxies formed half their stellar mass as late as 4 Gyr ago (the well-known effect of "galaxy downsizing"). Finally, our metallicity approach allows us to follow the average evolution in gas-phase metallicity for populations of galaxies, and extract the evolution of the cosmic metal mass density in stars and in gas, producing results in broad agreement with observations of metal densities in the Universe

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Type and Effect System for Multi-staged Exceptions

    Full text link
    Abstract. We present a type and effect system for a multi-staged lan-guage with exceptions. The proposed type and effect system checks if we safely synthesize complex controls with exceptions in multi-staged pro-gramming. The proposed exception constructs in multi-staged program-ming has no artificial restriction. Exception-raise and-handle expressions can appear in expressions of any stage, though they are executed only at stage 0. Exceptions can be raised during code composition and may escape before they are handled. Our effect type system support such fea-tures. We prove our type and effect system sound: empty effect means the input program has no uncaught exceptions during its execution.

    Galaxy And Mass Assembly (GAMA): The absence of stellar mass segregation in galaxy groups and consistent predictions from GALFORM and EAGLE simulations

    Get PDF
    We investigate the contentious issue of the presence, or lack thereof, of satellites mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We select groups with halo mass 12log(Mhalo/h1M)<14.512 \leqslant \log(M_{\text{halo}}/h^{-1}M_\odot) <14.5 and redshift z0.32z \leqslant 0.32 and probe the radial distribution of stellar mass out to twice the group virial radius. All the samples are carefully constructed to be complete in stellar mass at each redshift range and efforts are made to regularise the analysis for all the data. Our study shows negligible mass segregation in galaxy group environments with absolute gradients of 0.08\lesssim0.08 dex and also shows a lack of any redshift evolution. Moreover, we find that our results at least for the GAMA data are robust to different halo mass and group centre estimates. Furthermore, the EAGLE data allows us to probe much fainter luminosities (rr-band magnitude of 22) as well as investigate the three-dimensional spatial distribution with intrinsic halo properties, beyond what the current observational data can offer. In both cases we find that the fainter EAGLE data show a very mild spatial mass segregation at z0.22z \leqslant 0.22, which is again not apparent at higher redshift. Interestingly, our results are in contrast to some earlier findings using the Sloan Digital Sky Survey. We investigate the source of the disagreement and suggest that subtle differences between the group finding algorithms could be the root cause

    Galaxy and Mass Assembly (GAMA): Accurate number densities and environments of massive ultracompact galaxies at 0.02 < z < 0.3

    Get PDF
    Massive Ultracompact Galaxies (MUGs) are common at z=2-3, but very rare in the nearby Universe. Simulations predict that the few surviving MUGs should reside in galaxy clusters, whose large relative velocities prevent them from merging, thus maintaining their original properties (namely stellar populations, masses, sizes and dynamical state). We take advantage of the high-completeness, large-area spectroscopic GAMA survey, complementing it with deeper imaging from the KiDS and VIKING surveys. We find a set of 22 bona-fide MUGs, defined as having high stellar mass (>8x10^10 M_Sun) and compact size (R_e ~ 10^10 M_Sun Kpc^-2). Interestingly, a large fraction feature close companions -- at least in projection -- suggesting that many (but not all) live in the central regions of groups. Halo masses show these galaxies inhabit average-mass groups. As MUGs are found to be almost equally distributed among environments of different masses, their relative fraction is higher in more massive overdensities, matching the expectations that some of these galaxies fell in these regions at early times. However, there must be another channel leading some of these galaxies to an abnormally low merger history because our sample shows a number of objects that do not inhabit particularly dense environments. (abridged

    Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive?

    Get PDF
    Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies (log10_{10}[M_{*}/M_{\odot}]<9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10_{10}[M_{*}/M_{\odot}]<8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increases with decreasing stellar mass, and highlight that this is potentially due to increasing interaction timescales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results
    corecore