3,214 research outputs found

    Event Stream Processing with Multiple Threads

    Full text link
    Current runtime verification tools seldom make use of multi-threading to speed up the evaluation of a property on a large event trace. In this paper, we present an extension to the BeepBeep 3 event stream engine that allows the use of multiple threads during the evaluation of a query. Various parallelization strategies are presented and described on simple examples. The implementation of these strategies is then evaluated empirically on a sample of problems. Compared to the previous, single-threaded version of the BeepBeep engine, the allocation of just a few threads to specific portions of a query provides dramatic improvement in terms of running time

    Scaling of the critical slip distance in granular layers

    Full text link
    We investigate the nature of friction in granular layers by means of numerical simulation focusing on the critical slip distance, over which the system relaxes to a new stationary state. Analyzing a transient process in which the sliding velocity is instantaneously changed, we find that the critical slip distance is proportional to the sliding velocity. We thus define the relaxation time, which is independent of the sliding velocity. It is found that the relaxation time is proportional to the layer thickness and inversely proportional to the square root of the pressure. An evolution law for the relaxation process is proposed, which does not contain any length constants describing the surface geometry but the relaxation time of the bulk granular matter. As a result, the critical slip distance is scaled with a typical length scale of a system. It is proportional to the layer thickness in an instantaneous velocity change experiment, whereas it is scaled with the total slip distance in a spring-block system on granular layers.Comment: 4 papge

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception

    Are chimpanzees really so poor at understanding imperative pointing? Some new data and an alternative view of canine and ape social cognition

    Get PDF
    There is considerable interest in comparative research on different species’ abilities to respond to human communicative cues such as gaze and pointing. It has been reported that some canines perform significantly better than monkeys and apes on tasks requiring the comprehension of either declarative or imperative pointing and these differences have been attributed to domestication in dogs. Here we tested a sample of chimpanzees on a task requiring comprehension of an imperative request and show that, though there are considerable individual differences, the performance by the apes rival those reported in pet dogs. We suggest that small differences in methodology can have a pronounced influence on performance on these types of tasks. We further suggest that basic differences in subject sampling, subject recruitment and rearing experiences have resulted in a skewed representation of canine abilities compared to those of monkeys and apes

    Chiral Perturbation Theory in Few-Nucleon Systems

    Get PDF
    The low-energy effective theory of nuclear physics based on chiral symmetry is reviewed. Topics discussed include the nucleon-nucleon force, few-body potentials, isospin violation, pion-deuteron scattering, proton-neutron radiative capture, pion photoproduction on the deuteron, and pion production in proton-proton collisions.Comment: 15 pages, 2 figures, Latex, aipproc.sty and epsfig, invited talk at the 6th Conference on the Intersections of Particle and Nuclear Physics, Big Sky, May 199

    Anisotropic elastic theory of preloaded granular media

    Full text link
    A macroscopic elastic description of stresses in static, preloaded granular media is derived systematically from the microscopic elasticity of individual inter-grain contacts. The assumed preloaded state and friction at contacts ensure that the network of inter-grain contacts is not altered by small perturbations. The texture of this network, set by the preparation of the system, is encoded in second and fourth order fabric tensors. A small perturbation generates both normal and tangential inter-grain forces, the latter causing grains to reorient. This reorientation response and the incremental stress are expressed in terms of the macroscopic strain.Comment: 7 pages, 2 figures. Accepted version. [email protected] [email protected]

    A constitutive law for dense granular flows

    Full text link
    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.Comment: http://www.nature.com/nature/journal/v441/n7094/abs/nature04801.htm

    The terrestrial evolution of metabolism and life – by the numbers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allometric scaling relating body mass to metabolic rate by an exponent of the former (<it>Kleiber's Law</it>), commonly known as quarter-power scaling (QPS), is controversial for claims made on its behalf, especially that of its universality for all life. As originally formulated, Kleiber was based upon the study of heat; metabolic rate is quantified in watts (or calories per unit time). Techniques and technology for metabolic energy measurement have been refined but the math has not. QPS is susceptible to increasing deviations from theoretical predictions to data, suggesting that there is no single, universal exponent relevant to all of life. QPS's major proponents continue to fail to make good on hints of the power of the equation for understanding aging.</p> <p>Essentialist-deductivist view</p> <p>If the equation includes a term for efficiency in the exponent, thereby ruling out thermogenesis as part of metabolism, its heuristic power is greatly amplified, and testable deductive inferences are generated. If metabolic rate is measured in watts and metabolic efficiency is a redox-coupling ratio, then the equation is essentially about the energy storage capacity of organic molecules. The equation is entirely about the essentials of all life: water, salt, organic molecules, and energy. The water and salt provide an electrochemical salt bridge for the transmission of energy into and through the organic components. The equation, when graphed, treats the organic structure as battery-like, and relates its recharge rate and electrical properties to its longevity.</p> <p>Conclusion</p> <p>The equation models the longevity-extending effects of caloric restriction, and shows where those effects wane. It models the immortality of some types of cells, and supports the argument for the origin of life being at submarine volcanic vents and black smokers. It clarifies how early life had to change to survive drifting to the surface, and what drove mutations in its ascent. It does not deal with cause and effect; it deals with variables in the essentials of all life, and treats life as an epiphenomenon of those variables. The equation describes how battery discharge into the body can increase muscle mass, promote fitness, and extend life span, among other issues.</p

    Multiphase Gas In Galaxy Halos: The OVI Lyman-limit System toward J1009+0713

    Full text link
    We have serendipitously detected a strong O VI-bearing Lyman limit system at z_abs = 0.3558 toward the QSO J1009+0713 (z_em = 0.456) in our survey of low-redshift galaxy halos with the Hubble Space Telescope's Cosmic Origins Spectrograph. Its rest-frame equivalent width of W_r = 835 +/- 49 mA is the highest for an intervening absorber yet detected in any low-redshift QSO sightline, with absorption spanning 400 km s^-1 in its rest frame. HST/WFC3 images of the galaxy field show that the absorber is associated with two galaxies lying at 14 and 46 kpc from the QSO line of sight. The bulk of the absorbing gas traced by H I resides in two strong, blended component groups that possess a total logN(HI) = 18 - 18.8. The ion ratios and column densities of C, N, O, Mg, Si, S, and Fe, except the O VI, can be accommodated into a simple photoionization model in which diffuse, low-metallicity halo gas is exposed to a photoionizing field from stars in the nearby galaxies that propagates into the halo at 10% efficiency. We constrain the metallicity firmly within the range 0.1 - 1 Zsun, and photoionization modeling indirectly indicates a subsolar metallicity of 0.05 - 0.5 Zsun. The appearance of strong O VI and nine Mg II components and our review of similar systems in the literature support the "interface" picture of high-velocity O VI: the total strength of the O VI shows a positive correlation with the number of detected components in the low-ionization gas, however the total O VI column densities still far exceed the values expected from interface models for the number of detected clouds.Comment: 20 pages, 11 figures, accepted for publication in Ap

    Not fitting in and getting out : psychological type and congregational satisfaction among Anglican churchgoers in England

    Get PDF
    Listening to the motivations reported by individuals for ceasing church attendance and becoming church leavers, Francis and Richter identified high on the list the sense of "not fitting in". Drawing on psychological type theory, several recent studies have documented the way in which some psychological types are over-represented in church congregations and other psychological types are under-represented. Bringing these two observations together, the present study tested the hypothesis that church congregations have created type-alike communities within which individuals displaying the opposite type preferences are more likely to feel marginalised and to display lower levels of satisfaction with the congregations they attend. Data were provided by 1867 churchgoers who completed a measure of psychological type, together with measures of frequency of attendance and congregational satisfaction. These data confirmed that congregations were weighted towards preferences for introversion, sensing, feeling and judging, and that individuals displaying the opposite preferences (especially intuition, thinking and perceiving) recorded lower levels of congregational satisfaction. The implications of these findings are discussed for promoting congregational retention by enhancing awareness of psychological type preferences among those who attend
    corecore