18,208 research outputs found

    A New Framework for Distributed Submodular Maximization

    Full text link
    A wide variety of problems in machine learning, including exemplar clustering, document summarization, and sensor placement, can be cast as constrained submodular maximization problems. A lot of recent effort has been devoted to developing distributed algorithms for these problems. However, these results suffer from high number of rounds, suboptimal approximation ratios, or both. We develop a framework for bringing existing algorithms in the sequential setting to the distributed setting, achieving near optimal approximation ratios for many settings in only a constant number of MapReduce rounds. Our techniques also give a fast sequential algorithm for non-monotone maximization subject to a matroid constraint

    The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

    Full text link
    A wide variety of problems in machine learning, including exemplar clustering, document summarization, and sensor placement, can be cast as constrained submodular maximization problems. Unfortunately, the resulting submodular optimization problems are often too large to be solved on a single machine. We develop a simple distributed algorithm that is embarrassingly parallel and it achieves provable, constant factor, worst-case approximation guarantees. In our experiments, we demonstrate its efficiency in large problems with different kinds of constraints with objective values always close to what is achievable in the centralized setting

    A cell-based smoothed finite element method for kinematic limit analysis

    Get PDF
    This paper presents a new numerical procedure for kinematic limit analysis problems, which incorporates the cell-based smoothed finite element method with second-order cone programming. The application of a strain smoothing technique to the standard displacement finite element both rules out volumetric locking and also results in an efficient method that can provide accurate solutions with minimal computational effort. The non-smooth optimization problem is formulated as a problem of minimizing a sum of Euclidean norms, ensuring that the resulting optimization problem can be solved by an efficient second-order cone programming algorithm. Plane stress and plane strain problems governed by the von Mises criterion are considered, but extensions to problems with other yield criteria having a similar conic quadratic form or 3D problems can be envisaged

    Investigating the PageRank and sequence prediction based approaches for next page prediction

    Get PDF
    Discovering unseen patterns from web clickstream is an upcoming research area. One of the meaningful approaches for making predictions is using sequence prediction that is typically the improved compact prediction tree (CPT+). However, to increase this method's effectiveness, combining it with at least other methods is necessary. This work investigates such PageRank-based methods related to sequence prediction as All-K-Markov, DG, Markov 1st, CPT, CPT+. The experimental results proved that the integration of CPT+ and PageRank is the right solution for next page prediction in terms of accuracy, which is more than a standard method of approximately 0.0621%. Still, the size of the newly created sequence database is reduced up to 35%. Furthermore, our proposed solution has an accuracy that is much higher than other ones. It is intriguing for the next phase (testing one) to make the next page prediction in terms of time performance

    Crack growth modelling: enriched continuum vs. discrete models

    Get PDF
    Failure in quasi-brittle materials usually appears in the form of narrow bands called fracture process zones, where all inelastic deformation takes place, while the surrounding bulk material outside those areas typically unloads elastically. This localised nature of failure is the main source of size effects in these materials, since the width of the fracture process zone is a material property that does not scale with the size of the material volume. An adequate description of localised failure and associated size effects requires both size and behaviour of the fracture process zone and neighbouring material to be properly taken into account. In this study, we present two alternative approaches for modelling localised failure and simulating fracture propagation using finite element methods. In the first approach, an embedded crack appears at a constitutive level by enriching the kinematics of constitutive models, while in the second one this is done at the finite element level using cohesive interface elements. The advantages and shortcomings of both are presented through one numerical example on the failure of fibre-reinforced composite materials

    Hybrid User Pairing for Spectral and Energy Efficiencies in Multiuser MISO-NOMA Networks with SWIPT

    Get PDF
    In this paper, we propose a novel hybrid user pairing (HUP) scheme in multiuser multiple-input single-output nonorthogonal multiple access networks with simultaneous wireless information and power transfer. In this system, two information users with distinct channel conditions are optimally paired while energy users perform energy harvesting (EH) under non-linearity of the EH circuits. We consider the problem of jointly optimizing user pairing and power allocation to maximize the overall spectral efficiency (SE) and energy efficiency (EE) subject to userspecific quality-of-service and harvested power requirements. A new paradigm for the EE-EH trade-off is then proposed to achieve a good balance of network power consumption. Such design problems are formulated as the maximization of nonconcave functions subject to the class of mixed-integer non-convex constraints, which are very challenging to solve optimally. To address these challenges, we first relax binary pairing variables to be continuous and transform the design problems into equivalent non-convex ones, but with more tractable forms. We then develop low-complexity iterative algorithms to improve the objectives and converge to a local optimum by means of the inner approximation framework. Simulation results show the convergence of proposed algorithms and the SE and EE improvements of the proposed HUP scheme over state-of-the-art designs. In addition, the effects of key parameters such as the number of antennas and dynamic power at the BS, target data rates, and energy threshold, on the system performance are evaluated to show the effectiveness of the proposed schemes in balancing resource utilization

    Modelling complex cracks with finite elements: a kinematically enriched constitutive model

    Get PDF
    A continuum constitutive framework with embedded cohesive interface model is presented to describe the failure of quasi-brittle materials. Both cohesive behaviour for cracking inside the fracture process zone and elastic bulk behaviour are treated at integration points making implementation straightforward. In this sense, the proposed approach is simpler than existing ones that focus on element enrichments, such as the extended finite element method, while share similarities with smeared crack models, and offers the capability to correctly model quasi-brittle failure in post-peak regime at constitutive level. In this work, the formulation is introduced, numerical algorithms described and static and dynamic fracture simulations with complex crack patterns are conducted to demonstrate the capability and advantage of the proposed approach.ARC DP140100945, ARC FT140100408, ARC DE 15010170

    Modelling complex cracks with finite elements: a kinematically enriched constitutive model

    Get PDF
    A continuum constitutive framework with embedded cohesive interface model is presented to describe the failure of quasi-brittle materials. Both cohesive behaviour for cracking inside the fracture process zone and elastic bulk behaviour are treated at integration points making implementation straightforward. In this sense, the proposed approach is simpler than existing ones that focus on element enrichments, such as the extended finite element method, while share similarities with smeared crack models, and offers the capability to correctly model quasi-brittle failure in post-peak regime at constitutive level. In this work, the formulation is introduced, numerical algorithms described and static and dynamic fracture simulations with complex crack patterns are conducted to demonstrate the capability and advantage of the proposed approach.ARC DP140100945, ARC FT140100408, ARC DE 15010170

    Market returns to acquirers of substantial assets

    Full text link
    Does poor post-acquisition performance characterise firms that make non-M&A acquisitions? We investigate the wealth effects of substantial asset acquisitions (i.e. acquisitions that cost over $10 million) on acquiring firms' shareholders. We find significant abnormal positive market reaction to asset acquisition announcements and, contrary to findings for firms undertaking M&As, the acquiring firms perform exceptionally well post-acquisition. Our findings are robust to the research method weaknesses common to many studies of long-term performance and we control for free-cash-flow as well. Our results contradict the hubris hypothesis of acquisitions and lend weight to the argument that the auction-style process that characterizes corporate takeover bids contributes to overpayment
    • …
    corecore