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ABSTRACT 
 
Failure in quasi-brittle materials usually appears in the form of narrow bands called fracture process zones, 
where all inelastic deformation takes place, while the surrounding bulk material outside those areas typically 
unloads elastically. This localised nature of failure is the main source of size effects in these materials, since the 
width of the fracture process zone is a material property that does not scale with the size of the material volume. 
An adequate description of localised failure and associated size effects requires both size and behaviour of the 
fracture process zone and neighbouring material to be properly taken into account. In this study, we present two 
alternative approaches for modelling localised failure and simulating fracture propagation using finite element 
methods. In the first approach, an embedded crack appears at a constitutive level by enriching the kinematics of 
constitutive models, while in the second one this is done at the finite element level using cohesive interface 
elements. The advantages and shortcomings of both are presented through one numerical example on the failure 
of fibre-reinforced composite materials. 
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INTRODUCTION  
 
Localised mode of failure is usually encountered in quasi-brittle materials such as concrete, rock and ceramics. 
The deformation in such cases usually localises on narrow bands where all inelastic deformation takes place and 
the surrounding bulk material outside those areas typically unloads elastically. Since the width and orientation 
of the localisation band are both material properties, taking them into account in constitutive modelling of  
quasi-brittle materials is critical for a correct description of their post-localisation behaviour. This behaviour in 
such cases, scales with the width of the localisation band and the size of the volume element that contains it. 
This is the well-known ‘size effect’ mentioned in the literature. 
 
Localised failures have traditionally been modelled using two approaches - the continuous and the discontinuous 
approach. Notable models belong to the former class include nonlocal constitutive models (Bazant and and 
Pijaudier-Cabot 1988), gradient enhanced damage models (Peerlings et al. 1996), smeared crack models (Rashid 
1968, Bazant and Oh 1983), and recently emerged phase field models (Miehe et al. 2010). The key 
characteristics of the continuous approach is that the failure process is modelled by the degradation of the 
material and therefore the incorporation of a length scale is done at the constitutive level, or alternatively at the 
integration point level in a numerical method framework, such as the finite element method (FEM). Its name 
reflects one of the drawbacks of the continuous approach - true separation cannot be captured since the 
continuum, even though cracked, is always simulated as continuous medium. This is due to the fact that cracks 
are not explicitly represented; only their effects are taken into account through the degradation of effective 
properties of the continuum. On the other hand, discontinuous approaches employ explicit crack representations 
and hence allow material separation to be accurately reproduced as a geometrical discontinuity. Some of the 
methods for localised failure include zero-thickness cohesive interface elements (Ngo and Scordelis 1968, Xu 
and Needleman 1994, Mergheim et al. 2004, Dias-da-Costa et al. 2009a, Nguyen 2014a), elements with 
embedded strong discontinuities (Dvorkin et al. 1990, Dias-da-Costa et al. 2009b, 2013) and extended finite 
elements (XFEM) (Moes et al. 1999, Wells and Sluys 2001). Cohesive zone models (Barenblatt 1962 and 
Dugdale 1960) are usually employed in discontinuous approaches. 
 
In this paper a comparison of computational performances, particularly the efficiency and robustness, of the 
continuous approach and the discontinuous approach is established for the modelling of quasi-brittle failure. We 
use the kinematically enriched constitutive model developed recently by (Nguyen et al. 2012, 2014, 2015b) as a 
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continuous approach. For the discontinuous approach, the cohesive interface elements are used in the framework 
of discontinuous Galerkin approach recently employed by Nguyen (2015a). These two different approaches are 
used in the simulation of a fibre-reinforced composite material at the mesoscale, where both matrix and fibres 
are explicitly represented. All simulations are carried out on the same computer using the same FE solver 
facilitating the comparison of these approaches. In the next section, the kinematically enriched constitutive 
model approach is presented, followed by the formulation of a cohesive element in Section 3. In the last 
sections, the numerical example and findings are discussed and conclusions withdrawn. 
 
KINEMATICALLY ENRICHED CONSTITUTIVE MODEL 
 

General case 
 
We consider a material volume Ω consisting of a localisation zone Ωi of thickness h, surrounded by a bulk 
material Ωo (Fig. 1). Subscripts “i” and “o” are used for quantities inside and outside the localisation band, 
respectively (Einstein summation convention does not apply here). Accordingly, the stresses and strains are 
denoted by (𝝈𝒊, 𝝐𝒊), (𝝈𝒐, 𝝐𝒐) for the material inside and outside the localisation band, the latter within the 
homogeneous bulk. Dissipative processes are assumed to take place exclusively inside the thin localisation 
band, while the outside bulk is undergoing elastic unloading. Note that this assumption belongs to a more 
general case of discontinuous bifurcation, and while it is valid for quasi-brittle materials such as concrete, it may 
not hold for other materials. Examples of these materials include the ones with inelastic unloading outside shear 
bands such as in granular materials. The point is to devise a model, in terms of the averaged (or macro) stress 𝝈 
and averaged strain 𝝐 defined over the domain Ω, by coupling the different responses of the material inside and 
outside the localised region i.e., in terms of (𝝈𝒊, 𝝐𝒊), (𝝈𝒐, 𝝐𝒐), η, h and H (definitions shown in Fig. 1).  

 
Figure 1: Numerical discretisation and a localisation zone (shadowed) (a) and corresponding material responses 

inside and outside the localisation zone (b) (after Nguyen et al., 2014). 
 

Key-equations are presented here, while further details can be found in (Nguyen et al. 2012, 2014, 2015b). The 
macro strain rate is defined as the volume-averaged strain rates inside and outside the localisation band: 

                                                                                     �̇�̇ = 𝜂�̇�𝑖 + (1 − 𝜂)�̇�𝑜                                                                   (1) 

where 𝜂 is the volume fraction of the localisation band, 𝜂 = ℎ
𝐻 (Fig. 1). Given a very narrow localisation band, 

usually approximated by a zero thickness cohesive zone in quasi-brittle failure, the strain rate inside the 
localisation band can be approximated as 

                                                                        𝝐̇ 𝑖 ≈  1
ℎ  (𝒏 ⊗ ⟦�̇�⟧)𝑠𝑦𝑚                                                                            (2) 

where 𝒏 denotes the outward unit vector normal to the localisation band and ⟦�̇�⟧ is the velocity jump vector. 
One can see Equations (1-2) as a kinematic enrichment at the constitutive level due to the appearance of an 
additional strain rate in the constitutive description. This enrichment allows for the introduction of an additional 
constitutive behaviour for the material inside the localisation band. We can write the behaviour inside and 
outside the band in generic forms as: 

                                                                   𝝈𝑜̇ = 𝒂𝑜: �̇�𝑜, 𝝈𝑖̇ = 𝒂𝑖: �̇�𝑖                                                                            (3) 

where 𝒂𝑜and 𝒂𝑖 are the fourth-order material tangents of the materials outside and inside, respectively.  
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The connection between inside/outside quantities with the homogenised ones is enforced via the Hill-Mandel 
equation that should be met for any arbitrary strain rate �̇� and velocity jump ⟦�̇�⟧: 

                                                                          𝝈: �̇� = 𝜂𝝈𝑖: �̇�𝑖 + (1 − 𝜂)𝝈𝑜: �̇�𝑜                                                             (4)                                                                                                                            

Using (1-4), it can be shown that (i) the macro homogenised stress 𝝈 coincides with the stress 𝝈𝑜 describing the 
behaviour of the material outside the localisation zone, and (ii) the traction must be continuous across the 
boundary of the localisation zone: 

 𝝈 = 𝝈𝑜 and 𝝈𝒊 ∙ 𝒏 = 𝝈𝒐 ∙ 𝒏 (5) 

The above traction continuity condition – together with Equations (1-3) – is the key to determine the velocity 
jump vector from a given macro strain rate �̇�. Ignoring the details – these can be found in Nguyen et al (2014) – 
we can write: 

                                          ⟦�̇�⟧ =  [𝜂
ℎ 𝑨𝑜 + 1−𝜂

ℎ 𝑨𝑖]
−1

⋅ (𝒂𝑜: �̇�) ⋅ 𝒏 = 𝑪−1 ⋅  (𝒂𝑜: �̇�) ⋅ 𝒏                                              
(6) 

where 𝑪 is the tensor in the square brackets; 𝑨𝑜and 𝑨𝑖 are the acoustic tensors associated with 𝒂𝑜and 𝒂𝑖, 
respectively, 𝑨𝑜/𝑖 = 𝒏 ⋅ 𝒂𝑜/𝑖 ⋅ 𝒏. From (1-3 and 5), the stress strain relationship, in rate form, can be obtained as 

                                            �̇� ̇ =  1
1−𝜂 𝒂𝑜 : [�̇� − 𝜂

ℎ (𝒏 ⊗ (𝑪−1 ⋅ (𝒂𝑜: �̇�) ⋅ 𝒏))𝑠𝑦𝑚]                                                      (7) 

Note that the second term in the above expression accounts for cracking effects by a relaxation strain rate 
governed by the behaviour inside the localisation zone. In other words, cracking is modelled as a material 
degradation process in the same manner as damage models or smeared crack models. However, unlike these 
existing approaches that lump everything in a single macro constitutive behaviour, the key difference here is the 
separation of constitutive responses inside and outside the localisation zone, and the utilisation of their 
connection via the traction continuity to constitute macro homogenised behaviour. Since cracking is dealt with 
at the constitutive level, or at the integration points in a FEM context, there is no need to enhance the element 
interpolation functions, and hence all element technology remains the standard one. This is the key-advantage of 
the continuous approach relatively to discontinuous formulations, which depend on the type of element.  

The aforementioned constitutive model has been firstly used with a plastic-damage model to describe the 
localisation band, whereas the region outside this band was assumed to be linear elastic (Nguyen et al. 2014). It 
was then used in (Nguyen et al. 2015a) to model shear bands in geomaterials. In the next section, the 
specialisation of this general constitutive model to the case in which the localisation band can be modelled as a 
cohesive crack is presented. 

Embedded cohesive cracks 
     
Cohesive crack models adopt a traction-separation law instead of the stress-strain law usually used for the bulk. 
In a local coordinate system aligned with the crack, the cohesive law generally reads: 
 
                                                                               𝒕𝑐𝑟̇ = 𝑲𝑐𝑟⟦�̇�⟧𝑐𝑟                                                                                 
(8) 
 
where subscript ‘cr’ is used to indicate that the cohesive law is defined in the crack coordinate system. The 
traction vector is denoted by  𝒕𝑐𝑟 and 𝑲𝑐𝑟  is the second-order cohesive material tangent. 
 
In the case of cohesive cracks, the localisation band is simply a surface/line in three/two dimensions 
corresponding to ℎ → 0. Using 𝑓 = ℎ 𝐻⁄ ,  Equations (1, 2) can be simplified into  
 
                                                                           �̇� = 1

𝐻  (𝒏 ⊗ ⟦�̇�⟧)𝑠𝑦𝑚 + �̇�𝑜                                                                  (9) 

The velocity jump given in Equation (5) then becomes 
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                                                                   ⟦�̇�⟧ =  [1
𝐻 𝑨𝑜 + 𝑲]

−1
⋅ (𝒂𝑜: �̇�) ⋅ 𝒏                                                             

(10) 

where 𝑲 denotes the cohesive material tangent defined in the global coordinate system. In the same manner, the 
stress-strain relationship is now given by 

                                                 𝝈 ̇ =  𝒂𝑜 : [�̇� − 1
𝐻 (𝒏 ⊗ (𝑪−1 ⋅ (𝒂𝑜: �̇�) ⋅ 𝒏))𝑠𝑦𝑚]                                                      (11) 

where 𝑪 is the tensor defined by 𝑪 = 1
𝐻 𝑨𝑜 + 𝑲  (the term in square brackets in Equation (10)).  

Advantages of the enriched constitutive model 

The preliminary works of (Nguyen et al, 2012, 2014, 2015ab) on kinematically enriched constitutive models 
showed several advantages. In particular, and similarly to any continuum approach, when compared to 
discontinuous methods such as XFEM, the enriched constitutive modelling approach is robust and efficient (e.g. 
no additional unknowns are required such as with XFEM). It can be easily implemented in existing mesh-based 
or particle-based numerical codes (even in some commercial packages, since only a constitutive routine is 
needed) and able to handle crack branching, intersecting and merging. This is particularly interesting in the case 
of large-scale simulations involving complex cracking processes, where the discrete representation of cracks 
might not be feasible and the smeared crack approach limits the element size, which may not be satisfied due to 
the typical element sizes (in the order of meters). Current practice to solve this issue relies on artificially 
increasing the fracture energy or reducing the tensile strength (Levy et al. 2011). In this sense, compared to 
existing smeared crack models, the enriched approach is free of the so-called local snapback instability, which 
settles the limit on the finite element size for the standard smeared crack approach. The use of two inter-
dependent constitutive relationships for bulk and localisation zone, and their corresponding sizes, together with 
a two-level stress return algorithm (Nguyen et al., 2015b), naturally resolves snap-back issues and gives the 
model an intrinsic scaling law to deal with size effects. 
 
DISCRETE CRACK MODELLING 
 
Among various discrete crack modelling techniques (cohesive interface elements, XFEM, embedded strong 
discontinuities, among others) the zero-thickness cohesive interface elements are herein adopted due to the 
(i) robustness, (ii) easy implementation (even for parallel computers) and (iii) ability to model complex crack 
patterns, see for example (Xu and Needleman 1994, Nguyen 2014a). These interface elements are inserted into 
the mesh prior to the simulation using the tool developed by (Nguyen 2014b), cf. Fig. 2, within the framework 
of a discontinuous Galerkin method. It should be emphasised that cohesive interface elements are to some extent 
mesh-dependent since the crack path is constrained to the element edges/surfaces, although this is not 
pronounced for complex crack patterns as shown in (Nguyen 2014b). 

 
 
Figure 2: Zero-thickness interface elements embedded in a mesh of triangles (left) and a typical four-node linear 

interface element (nodes are 1, 3, 5, 7) (right). 
 

The weak form is the standard one-field variational formulation given as follows 

                      ∫𝛺𝛿𝒖 ⋅ 𝒃𝑑𝛺 +  ∫𝛤𝑡𝛿𝒖 ⋅ �̅� 𝑑𝛤 = ∫𝛺𝛿𝝐: 𝝈(𝒖)𝑑𝛺 + ∫𝛤𝑑 𝛿⟦𝒖⟧ ⋅ 𝒕𝑐(⟦𝒖⟧) 𝑑𝛤                               (11) 
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where 𝛺 is the domain of interest, 𝛤𝑡  denotes the traction boundary, 𝛤𝑑 is the crack surfaces (which constitute all 
the element edges in two dimensions and element surfaces in three dimensions), 𝒃 is the body force, �̅� is the 
applied traction, ⟦𝒖⟧ is the displacement jump (that measures the crack separation) and 𝒕𝑐denotes the cohesive 
traction. Note that only the last term in Equation (11), which is work done by the cohesive cracks, differs from 
the standard weak form. In this approach, conventional interface elements are used in conjunction with the so-
called intrinsic cohesive law (cf. Figure 3-left). In this case, the initial elastic stiffness of the interface elements 
artificially increases the compliance of the system. One solution to this issue is to employ an initially rigid 
cohesive law (cf. Fig. 3-right) together with a discontinuous Galerkin (dG) formulation (Mergheim et al 2004) 
to link the solid elements before crack initiation. Details on the dG cohesive interface elements, computer 
implementation and applications can be found in (Nguyen 2014a). 

 
Figure 3: Two types of cohesive laws: intrinsic cohesive law or initially elastic one (left) and extrinsic or 

initially rigid cohesive law (right). 
 
RESULTS AND DISCUSSIONS 

 
This section presents some simulations of the failure of a fibre-reinforced composite sample shown in Fig. 4. 
Note that this sample was selected just for illustration and comparison of two approaches and it is probably not 
representative of a real composite material. The material properties are the following: Young’s modulus and 
Poisson’s ratio of the matrix, 4 GPa and 0.4, respectively, Young’s modulus and Poisson’s ratio of the fibres are 
40 GPa and 0.33, respectively. For matrix cracks, a tensile strength of 30 MPa is adopted with a fracture energy 
of 0.25 N/mm, whereas for the interfacial cracks, the tensile strength is 10 MPa and the fracture energy is 0.05 
N/mm. As can be seen, the nonlinearities are assumed to originate from cracking solely and the bulk is modelled 
as linear elastic. 
 

 
Figure 4: A unit square made of fibre-reinforced composite material. All fibres are represented by circles of the 
same radius of 0.1 mm. A uniaxial tensile test is performed where the left edge is fixed in both directions and 

the right edge is pulled horizontally. Plane stress condition is assumed. 
 
The discretisation of the domain in Fig. 4 consists of 15680 linear triangular elements (7909 nodes), and on that 
discretisation basis, modifications to fit the requirements of continuous and discontinuous approaches are 
needed. Only a single discretisation basis is considered since the mesh objectivity of the continuous approach 
was already demonstrated elsewhere (Nguyen et al. 2012, 2014), while the discontinuous one intrinsically has 
dissipation scaling with surface areas and hence is free from zero dissipation modes when the element size goes 
to zero. In this study, for both approaches, matrix-fibre debonding is explicitly modelled using cohesive 
elements and this is obtained by inserting interface elements only at the matrix/fibre interface. For the 
discontinuous approach, a further modification is needed by inserting interface elements at every element 
boundaries except for elements discretising the fibres, since the fibres are assumed elastic. The continuous 
approach in this case employs 15680 solid elements and 616 interface elements with a total of 8525 nodes (mesh 
1), while the finite element mesh for continuous approach contains 15680 solid elements and 12744 interface 
elements with a total of 28999 nodes (mesh 2, which has three times the number of nodes compared to mesh 1). 
For further details, the first mesh is used with standard cohesive elements to model matrix/fibre debonding and 
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the kinematically enriched constitutive model (at the integration points of the bulk elements) to model the 
matrix cracking. The second mesh is used with standard cohesive elements to model matrix/fibre debonding and 
with dG cohesive elements to model the matrix cracking. 
 
As for the cohesive laws, the model developed by (Turon et al. 2006), which is a mixed-mode initially elastic 
bilinear cohesive law1, is adopted. The simulations are carried out using a displacement control and the 
nonlinear equations are solved using a full standard Newton-Raphson method. Figure 5 shows the crack patterns 
obtained with the two approaches. It should be noted that modelling the matrix/fibre debonding requires a 
discontinuous approach (i.e. interface elements). If a continuous approach is to be used, then a thin layer around 
the fibres is needed (Nguyen et al. 2010). Finding the thickness of this thin layer is not trivial and its meshing 
can result in many elements. For this reason, interface elements were selected for modelling debonding.  
 
As can be observed, similar crack patterns are obtained using both formulations. In terms of the load-
displacement response (measured at the right edge), as shown in Fig. 6, there is a small discrepancy between the 
two approaches. The discontinuous response is more brittle than the continuous response, this difference is more 
pronounced at later stages of the failure process. This is expected since it is well known that continuous 
approaches cannot accurately capture the kinematics of strong geometrical discontinuities: in Fig. 5 true 
separation of the matrix phase can be obtained by the dG cohesive elements, whereas cracks are represented by 
widely stretched elements in the continuous approach. In the continuous approach, crack orientation is locally 
determined from the first principle stress at the integration point and is not restricted to a predefined orientation 
dictated by the element boundaries, as with cohesive interface elements. However, as noted in (Wells and Sluys, 
2001), the use of a nonlocal stress field for retrieving the orientation of the crack can avoid stress-locking effects 
and the more ductile behaviour observed with the continuous approach could be a result of such locking. Further 
investigations are still needed. 

 

 
Figure 5: Crack patterns obtained with the discontinuous approach (left) and the combined continuous-

discontinuous approach (right). Colour in the left denotes the stress field (𝜎𝑥𝑥) and the colour in the right figure 
represents the damage field. 

 
Figure 6: Response in terms of load-displacement curves. After an initial elastic regime, the debonding of the 

matrix/fibre interface resulted in a nonlinear hardening response with a reduced stiffness. At the peak, a 
dominant crack has propagated through the sample. A softening post-peak response is observed with the 

opening of this dominant crack. 
 

1 From this initially elastic cohesive law, an initially rigid cohesive law can be straightforwardly obtained by 
‘shifting’. Details can be found in (Nguyen 2014a). 
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Figure 7: Cracking process of fibre-reinforced composite materials starts with interface debonding and the 

coalescence of the cracks into a dominant crack that runs through the sample. 
 
The cracking process of fibre-reinforced composite materials, depicted in Fig. 72, starts with interface debonding 
(interfacial cracks) and then cracks tend to kink into the matrix, before finally coalescing into a dominant crack 
running through the sample. During later stages the other cracks close. This is qualitatively in good agreement 
with experimental observations by París et al. (2006), example shown in Fig. 8. 
 

 
Figure 8: Failure of fibre-reinforced composite materials from experiments (París et al. 2006). 

 
DISCUSSION AND CONCLUSIONS 
 
In terms of computational cost and robustness, the continuous approach performs better than the discontinuous 
approach, thanks to its design that does not need any other element enrichments that may introduce additional 
degrees of freedom to the system. As a consequence, the simulation using the enriched constitutive model for 
the matrix cracking ran in about 360 seconds while the one using dG cohesive interface elements took about 
2790 seconds, which is approximately 7 times slower. Note that this is not only due to a higher number of nodes 
(28999 nodes compared with 8525 nodes) but also due to the fact that the dG cohesive elements suffered from 
convergence issues with large increments, and hence small displacement increments (half of those used in the 
continuous approach) were needed. The discontinuous approach could, however, be optimised such that the 
interface elements would be introduced in the region of interest, thus reducing the number of degrees of 
freedom. Advanced solution-finding techniques such as non-iterative solution methods, see (Graça-e-Costa et al. 
2012) and references therein, and viscous regularisation techniques can also be used to improve the robustness 
of the discontinuous analyses.  
 
The proposed continuous approach however suffers from the well known stress locking issue when elements 
with multiple integration points are used. The use of linear triangle elements in the presented example does 
inhibits the stress locking issues due to the fact that only a single integration point in the element is used to 
capture the effect of a single crack within the element. In this sense, the orientation of the crack crossing the 
element is correctly represented by a single cohesive crack at the constitutive (or integration point) level (Fig. 
1). However, when elements with multiple integration points (for example quadrilateral elements or quadratic 
triangle elements) are used, the elements contain several cohesive cracks, each one with its own orientation. 
This is a source of severe stress locking, as experienced by Nguyen et al. (2014) as the separation of the element 
into two parts cannot be guaranteed. Therefore, a simple resolution is to base the determination of crack 
orientations at all integration points in an element on a nonlocal stress field and enforce the same orientation for 

2 Animation of these simulations can be found at 
https://www.youtube.com/watch?v=QPb_vqUlx7o&feature=youtu.be. 
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all cracks in the element. Alternatively transition from constitutive enrichment to element based enrichment 
(Dias-da-Costa et al., 2009, 2013) is also expected to alleviate this locking effect. These issues and 
corresponding resolutions will be addressed in our future work. 
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