23 research outputs found

    Gene Expression Analysis of Forskolin Treated Basilar Papillae Identifies MicroRNA181a as a Mediator of Proliferation

    Get PDF
    Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients.Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells.These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells

    Functional Hair Cell Mechanotransducer Channels Are Required for Aminoglycoside Ototoxicity

    Get PDF
    Aminoglycosides (AG) are commonly prescribed antibiotics with potent bactericidal activities. One main side effect is permanent sensorineural hearing loss, induced by selective inner ear sensory hair cell death. Much work has focused on AG's initiating cell death processes, however, fewer studies exist defining mechanisms of AG uptake by hair cells. The current study investigated two proposed mechanisms of AG transport in mammalian hair cells: mechanotransducer (MET) channels and endocytosis. To study these two mechanisms, rat cochlear explants were cultured as whole organs in gentamicin-containing media. Two-photon imaging of Texas Red conjugated gentamicin (GTTR) uptake into live hair cells was rapid and selective. Hypocalcemia, which increases the open probability of MET channels, increased AG entry into hair cells. Three blockers of MET channels (curare, quinine, and amiloride) significantly reduced GTTR uptake, whereas the endocytosis inhibitor concanavalin A did not. Dynosore quenched the fluorescence of GTTR and could not be tested. Pharmacologic blockade of MET channels with curare or quinine, but not concanavalin A or dynosore, prevented hair cell loss when challenged with gentamicin for up to 96 hours. Taken together, data indicate that the patency of MET channels mediated AG entry into hair cells and its toxicity. Results suggest that limiting permeation of AGs through MET channel or preventing their entry into endolymph are potential therapeutic targets for preventing hair cell death and hearing loss

    Supporting Cell Division Is Not Required for Regeneration of Auditory Hair Cells After Ototoxic Injury In Vitro

    No full text
    In chickens, nonsensory supporting cells divide and regenerate auditory hair cells after injury. Anatomical evidence suggests that supporting cells can also transdifferentiate into hair cells without dividing. In this study, we characterized an organ culture model to study auditory hair cell regeneration, and we used these cultures to test if direct transdifferentiation alone can lead to significant hair cell regeneration. Control cultures (organs from posthatch chickens maintained without streptomycin) showed complete hair cell loss in the proximal (high-frequency) region by 5 days. In contrast, a 2-day treatment with streptomycin induced loss of hair cells from all regions by 3 days. Hair cell regeneration proceeded in culture, with the time course of supporting cell division and hair cell differentiation generally resembling in vivo patterns. The degree of supporting cell division depended upon the presence of streptomycin, the epithelial region, the type of culture media, and serum concentration. On average, 87% of the regenerated hair cells lacked the cell division marker BrdU despite its continuous presence, suggesting that most hair cells were regenerated via direct transdifferentiation. Addition of the DNA polymerase inhibitor aphidicolin to culture media prevented supporting cell division, but numerous hair cells were regenerated nonetheless. These hair cells showed signs of functional maturation, including stereociliary bundles and rapid uptake of FM1-43. These observations demonstrate that direct transdifferentiation is a significant mechanism of hair cell regeneration in the chicken auditory after streptomycin damage in vitro
    corecore