367 research outputs found

    Interacting fermions and domain wall defects in 2+1 dimensions

    Full text link
    We consider a Dirac field in 2+1 dimensions with a domain wall like defect in its mass, minimally coupled to a dynamical Abelian vector field. The mass of the fermionic field is assumed to have just one linear domain wall, which is externally fixed and unaffected by the dynamics. We show that, under some general conditions on the parameters, the localized zero modes predicted by the Callan and Harvey mechanism are stable under the electromagnetic interaction of the fermions

    The Thirring interaction in the two-dimensional axial-current-pseudoscalar derivative coupling model

    Full text link
    The authors reexamine the two-dimensional model of massive fermions interacting with a massless pseudoscalar field via axial-current-pseudoscalar derivative coupling. Performing a canonical field transformation on the Bose field algebra the model is mapped into the Thirring model with an additional vector-current-scalar-derivative interaction (Schroer-Thirring model). The complete bosonized version of the model is presented. The bosonized composite operators of the quantum Hamiltonian are obtained as the leading operators in the Wilson short distance expansion.Comment: 13 page

    Dynamical Breakdown of Symmetry in a (2+1) Dimensional Model Containing the Chern-Simons Field

    Full text link
    We study the vacuum stability of a model of massless scalar and fermionic fields minimally coupled to a Chern-Simons field. The classical Lagrangian only involves dimensionless parameters, and the model can be thought as a (2+1) dimensional analog of the Coleman-Weinberg model. By calculating the effective potential, we show that dynamical symmetry breakdown occurs in the two-loop approximation. The vacuum becomes asymmetric and mass generation, for the boson and fermion fields takes place. Renormalization group arguments are used to clarify some aspects of the solution.Comment: Minor modifications in the text and figure

    Renormalization Group Study of Chern-Simons Field Coupled to Scalar Matter in a Modified BPHZ Subtraction Scheme

    Get PDF
    We apply a soft version of the BPHZ subtraction scheme to the computation of two-loop corrections from an Abelian Chern-Simons field coupled to (massive) scalar matter with a λ(ΦΦ)2\lambda(\Phi^\dag\Phi)^2 and ν(ΦΦ)3\nu(\Phi^\dag\Phi)^3 self-interactions. The two-loop renormalization group functions are calculated. We compare our results with those in the literature.Comment: 15 pages, 7 figures, revtex. To appear in Phys. Rev.

    Ground State and Excitations of Spin Chain with Orbital Degeneracy

    Full text link
    The one dimensional Heisenberg model in the presence of orbital degeneracy is studied at the SU(4) symmetric viewpoint by means of Bethe ansatz. Following Sutherland's previous work on an equivalent model, we discuss the ground state and the low-lying excitations more extensively in connection to the spin systems with orbital degeneracy. We show explicitly that the ground state is a SU(4) singlet. We study the degeneracies of the elementary excitations and the spectra of the generalized magnons consisting of these excitations. We also discuss the complex 2-strings in the context of the Bethe ansatz solutions.Comment: Revtex, 9 pages, 3 figures; typos correcte

    Exact Effective Action for (1+1 Dimensional) Fermions in an Abelian Background at Finite Temperature

    Get PDF
    In an effort to further understand the structure of effective actions for fermions in an external gauge background at finite temperature, we study the example of 1+1 dimensional fermions interacting with an arbitrary Abelian gauge field. We evaluate the effective action exactly at finite temperature. This effective action is non-analytic as is expected at finite temperature. However, contrary to the structure at zero temperature and contrary to naive expectations, the effective action at finite temperature has interactions to all (even) orders (which, however, do not lead to any quantum corrections). The covariant structure thus obtained may prove useful in studying 2+1 dimensional models in arbitrary backgrounds. We also comment briefly on the solubility of various 1+1 dimensional models at finite temperature.Comment: A few clarifying remarks added;21 page

    Grb2 monomer-dimer equilibrium determines normal versus oncogenic function

    Get PDF
    The adaptor protein growth factor receptor-bound protein 2 (Grb2) is ubiquitously expressed in eukaryotic cells and involved in a multitude of intracellular protein interactions. Grb2 plays a pivotal role in tyrosine kinase-mediated signal transduction including linking receptor tyrosine kinases to the Ras/mitogen-activated protein (MAP) kinase pathway, which is implicated in oncogenic outcome. Grb2 exists in a constitutive equilibrium between monomeric and dimeric states. Here we show that only monomeric Grb2 is capable of binding to SOS and upregulating MAP kinase signalling and that the dimeric state is inhibitory to this process. Phosphorylation of tyrosine 160 (Y160) on Grb2, or binding of a tyrosylphosphate-containing ligand to the SH2 domain of Grb2, results in dimer dissociation. Phosphorylation of Y160 on Grb2 is readily detectable in the malignant forms of human prostate, colon and breast cancers. The self-association/dissociation of Grb2 represents a switch that regulates MAP kinase activity and hence controls cancer progression

    Human place and response learning: navigation strategy selection, pupil size and gaze behavior.

    Get PDF
    In this study, we examined the cognitive processes and ocular behavior associated with on-going navigation strategy choice using a route learning paradigm that distinguishes between three different wayfinding strategies: an allocentric place strategy, and the egocentric associative cue and beacon response strategies. Participants approached intersections of a known route from a variety of directions, and were asked to indicate the direction in which the original route continued. Their responses in a subset of these test trials allowed the assessment of strategy choice over the course of six experimental blocks. The behavioral data revealed an initial maladaptive bias for a beacon response strategy, with shifts in favor of the optimal configuration place strategy occurring over the course of the experiment. Response time analysis suggests that the configuration strategy relied on spatial transformations applied to a viewpoint-dependent spatial representation, rather than direct access to an allocentric representation. Furthermore, pupillary measures reflected the employment of place and response strategies throughout the experiment, with increasing use of the more cognitively demanding configuration strategy associated with increases in pupil dilation. During test trials in which known intersections were approached from different directions, visual attention was directed to the landmark encoded during learning as well as the intended movement direction. Interestingly, the encoded landmark did not differ between the three navigation strategies, which is discussed in the context of initial strategy choice and the parallel acquisition of place and response knowledge

    The accuracy of the MMSE in detecting cognitive impairment when administered by general practitioners: A prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Mini-Mental State Examination (MMSE) has contributed to detecting cognitive impairment, yet few studies have evaluated its accuracy when used by general practitioners (GP) in an actual public-health setting.</p> <p>Objectives</p> <p>We evaluated the accuracy of MMSE scores obtained by GPs by comparing them to scores obtained by Alzheimer's Evaluation Units (UVA).</p> <p>Methods</p> <p>The study was observational in design and involved 59 voluntary GPs who, after having undergone training, administered the MMSE to patients with symptoms of cognitive disturbances. Individuals who scored ≤ 24 (adjusted by age and educational level) were referred to Alzheimer's Evaluation Units (UVA) for diagnosis (including the MMSE). UVAs were unblinded to the MMSE score of the GP. To measure interrater agreement, the weighted Kappa statistic was calculated. To evaluate factors associated with the magnitude of the difference between paired scores, a linear regression model was applied. To quantify the accuracy in discriminating no cognitive impairment from any cognitive impairment and from Alzheimer's disease (AD), the ROC curves (AUC) were calculated.</p> <p>Results</p> <p>For the 317 patients, the mean score obtained by GPs was significantly lower (15.8 vs. 17.4 for the UVAs; p < 0.01). However, overall concordance was good (Kappa = 0.86). Only the diagnosis made by the UVA was associated with the difference between paired scores: the adjusted mean difference was 3.1 for no cognitive impairment and 3.8 for mild cognitive impairment. The AUC of the scores for GPs was 0.80 (95%CI: 0.75–0.86) for discriminating between no impairment and any impairment and 0.89 (95%CI: 0.84–0.94) for distinguishing patients with AD, though the UVA scores discriminated better.</p> <p>Conclusion</p> <p>In a public-health setting involving patients with symptoms of cognitive disturbances, the MMSE used by the GPs was sufficiently accurate to detect patients with cognitive impairment, particularly those with dementia.</p
    corecore