123 research outputs found

    Revaluation of the Glossopterids from the Lower Permian of Cambaí Grande Outcrop, Paraná Basin, RS

    Get PDF
    O Afloramento Cambaí Grande está localizado no Município de São Gabriel, no Estado do Rio Grande do Sul, Brasil, sendo conhecido pela ocorrência de uma associação ímpar, composta de conchas de pelecípodes marinhos associados a restos vegetais de alguns elementos da “Flora Glossopteris”. O presente trabalho teve como principal objetivo a reavaliação da paleoflora de Cambaí Grande, bem como a reanálise do posicionamento estratigráfico do afloramento. Para tanto, foi realizada a revisão do material paleobotânico existente em coleções e uma redescrição da seção aflorante. A seqüência aflorante está dividida em duas seções bem definidas (uma inferior e outra superior), sendo que os megafósseis vegetais estudados encontram-se na parte basal da seção superior. Diferentemente do que se encontra estabelecido na literatura, as correlações com sondagens indicaram que o Afloramento Cambaí Grande posiciona-se estratigraficamente no intervalo correspondente à porção médio-superior da Formação Rio Bonito e não na porção superior do Grupo Itararé. Além disso, o conteúdo paleobotânico levantado por diversos autores compreendia, até o presente trabalho, a presença dos gêneros Gangamopteris, Samaropsis, Cordaicarpus e Cordaites, afora restos não identificados atribuídos a algas e a um cone de gimnosperma. Este estudo, no entanto, confirmou a presença do primeiro registro de folhas do tipo Glossopteris na paleoflora de Cambaí Grande, além da ocorrência, pela primeira vez, da espécie indiana Gangamopteris cyclopteroides Feistmantel, o que aumenta a possibilidade de correlação desta associação com as das paleofloras mais jovens, pertencentes à Formação Rio Bonito, e com aquelas dos estágios florísticos indianos.The Cambaí Grande Outcrop, located in the municipality of São Gabriel of the State of Rio Grande do Sul, southernmost Brazil, is characterized by the occurrence of an exclusive fossil assemblage composed of marine invertebrate shells associated with some plant remains of elements from the “Glossopteris Flora”. The main goal of this work is to reevaluate the “Cambaí Grande Flora” as well as section reanalysis. Therefore, the authors reviewed the existing paleobotanical material deposited at Universidade Federal do Rio Grande do Sul (UFRGS) and Universidade do Vale do Rio dos Sinos (UNISINOS) and redescribed the outcrop section. The outcrop sequence is 60 m thick and is divided into two well defined sections (both upper and lower). The studied plants were found in the basal part of the upper section. Besides the paleobotanical contents like Gangamopteris, Samaropsis, Cordaicarpus, Cordaites, unidentified remains of algal filaments and a cone of gymnosperm previously recorded by several authors and not properly understood thus far have been analyzed. This study confirmed for the first time the presence of Glossopteris-type leaves and the Indian species Gangamopteris cyclopteroides Feistmantel in the Cambaí Grande flora which increases the possibility of a correlation of this plant assemblage with that of the Rio Bonito Formation, Brazil, and those of the younger horizons of India

    Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES

    Get PDF
    In 2008 the National Center for Health Statistics released a dual energy x-ray absorptiometry (DXA) whole body dataset from the NHANES population-based sample acquired with modern fan beam scanners in 15 counties across the United States from 1999 through 2004. The NHANES dataset was partitioned by gender and ethnicity and DXA whole body measures of %fat, fat mass/height2, lean mass/height2, appendicular lean mass/height2, %fat trunk/%fat legs ratio, trunk/limb fat mass ratio of fat, bone mineral content (BMC) and bone mineral density (BMD) were analyzed to provide reference values for subjects 8 to 85 years old. DXA reference values for adults were normalized to age; reference values for children included total and sub-total whole body results and were normalized to age, height, or lean mass. We developed an obesity classification scheme by using estabbody mass index (BMI) classification thresholds and prevalences in young adults to generate matching classification thresholds for Fat Mass Index (FMI; fat mass/height2). These reference values should be helpful in the evaluation of a variety of adult and childhood abnormalities involving fat, lean, and bone, for establishing entry criteria into clinical trials, and for other medical, research, and epidemiological uses

    Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering

    Get PDF
    Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding

    Sarcoidosis activates diverse transcriptional programs in bronchoalveolar lavage cells

    Get PDF
    Abstract Background Sarcoidosis is a multisystem immuno-inflammatory disorder of unknown etiology that most commonly involves the lungs. We hypothesized that an unbiased approach to identify pathways activated in bronchoalveolar lavage (BAL) cells can shed light on the pathogenesis of this complex disease. Methods We recruited 15 patients with various stages of sarcoidosis and 12 healthy controls. All subjects underwent bronchoscopy with lavage. For each subject, total RNA was extracted from BAL cells and hybridized to an Affymetrix U133A microarray. Rigorous statistical methods were applied to identify differential gene expression between subjects with sarcoidosis vs. controls. To better elucidate pathways differentially activated between these groups, we integrated network and gene set enrichment analyses of BAL cell transcriptional profiles. Results Sarcoidosis patients were either non-smokers or former smokers, all had lung involvement and only two were on systemic prednisone. Healthy controls were all non-smokers. Comparison of BAL cell gene expression between sarcoidosis and healthy subjects revealed over 1500 differentially expressed genes. Several previously described immune mediators, such as interferon gamma, were upregulated in the sarcoidosis subjects. Using an integrative computational approach we constructed a modular network of over 80 gene sets that were highly enriched in patients with sarcoidosis. Many of these pathways mapped to inflammatory and immune-related processes including adaptive immunity, T-cell signaling, graft vs. host disease, interleukin 12, 23 and 17 signaling. Additionally, we uncovered a close association between the proteasome machinery and adaptive immunity, highlighting a potentially important and targetable relationship in the pathobiology of sarcoidosis. Conclusions BAL cells in sarcoidosis are characterized by enrichment of distinct transcriptional programs involved in immunity and proteasomal processes. Our findings add to the growing evidence implicating alveolar resident immune effector cells in the pathogenesis of sarcoidosis and identify specific pathways whose activation may modulate disease progression

    Using metadynamics to explore complex free-energy landscapes

    Get PDF
    Metadynamics is an atomistic simulation technique that allows, within the same framework, acceleration of rare events and estimation of the free energy of complex molecular systems. It is based on iteratively \u2018filling\u2019 the potential energy of the system by a sum of Gaussians centred along the trajectory followed by a suitably chosen set of collective variables (CVs), thereby forcing the system to migrate from one minimum to the next. The power of metadynamics is demonstrated by the large number of extensions and variants that have been developed. The first scope of this Technical Review is to present a critical comparison of these variants, discussing their advantages and disadvantages. The effectiveness of metadynamics, and that of the numerous alternative methods, is strongly influenced by the choice of the CVs. If an important variable is neglected, the resulting estimate of the free energy is unreliable, and predicted transition mechanisms may be qualitatively wrong. The second scope of this Technical Review is to discuss how the CVs should be selected, how to verify whether the chosen CVs are sufficient or redundant, and how to iteratively improve the CVs using machine learning approaches

    SNi from SN2: a front-face mechanism ‘synthase’ engineered from a retaining hydrolase

    Get PDF
    SNi or SNi-like mechanisms, in which leaving group departure and nucleophile approach occur on the same ‘front’ face, have been observed previously experimentally and computationally in both the chemical and enzymatic (glycosyltransferase) substitution reactions of α-glycosyl electrophiles. Given the availability of often energetically comparable competing pathways for substitution (SNi vs SN1 vs SN2) the precise modulation of this archetypal reaction type should be feasible. Here, we show that the drastic engineering of a protein that catalyzes substitution, a retaining β-glycosidase (from Sulfolobus solfataricus SSβG), apparently changes the mode of reaction from “SN2” to “SNi”. Destruction of the nucleophilic Glu387 of SSβG-WT through Glu387Tyr mutation (E387Y) created a catalyst (SSβG-E387Y) with lowered but clear transglycosylation substitution activity with activated substrates, altered substrate and reaction preferences and hence useful synthetic (‘synthase’) utility by virtue of its low hydrolytic activity with unactivated substrates. Strikingly, the catalyst still displayed retaining β stereoselectivity, despite lacking a suitable nucleophile; pH-activity profile, mechanism-based inactivators and mutational analyses suggest that SSβG-E387Y operates without either the use of nucleophile or general acid/base residues, consistent with a SNi or SNi-like mechanism. An x-ray structure of SSβG-E387Y and subsequent metadynamics simulation suggest recruitment of substrates aided by a π-sugar interaction with the introduced Tyr387 and reveal a QM/MM free energy landscape for the substitution reaction catalyzed by this unnatural enzyme similar to those of known natural, SNi-like glycosyltransferase (GT) enzymes. Proton flight from the putative hydroxyl nucleophile to the developing p-nitrophenoxide leaving group of the substituted molecule in the reactant complex creates a hydrogen bond that appears to crucially facilitate the mechanism, mimicking the natural mechanism of SNi-GTs. An oxocarbenium ion-pair minimum along the reaction pathway suggests a step-wise SNi-like DN*ANss rather than a concerted SNi DNAN mechanism. This first observation of a front face mechanism in a β-retaining glycosyl transfer enzyme highlights, not only that unusual SNi reaction pathways may be accessed through direct engineering of catalysts with suitable environments, but also suggests that ‘β-SNi’ reactions are also feasible for glycosyl transfer enzymes and the more widespread existence of SNi or SNi-like mechanism in nature

    Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise

    Get PDF
    Background: Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary. Methodology: Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., exvivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in bot

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases
    corecore