487 research outputs found
Geranylgeraniol overcomes the block of cell proliferation by lovastatin in C6 glioma cells
It is well documented that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors prevent cultured mammalian cells from progressing through the cell cycle, suggesting a critical role for a mevalonate-derived product. Recently, it has been shown that free geranylgeraniol (GG-OH) and farnesol (F-OH) can be utilized by C6 glioma cells for protein isoprenylation. The ability of CC-OH and F-OH to restore protein geranylgeranylation or farnesylation selectively has enabled us to examine the possibility that mevalonate is essential for cell proliferation because it is a precursor of farnesyl pyrophosphate or geranylgeranyl pyrophosphate, the isoprenyl donors involved in the posttranslational modification of key regulatory proteins. In this study we report that CC-OH, as well as mevalonate, overcomes the arrest of cell proliferation of C6 glioma cells treated with lovastatin, as assessed by increased cell numbers and a stimulation in [H-3]thymidine incorporation. The increase in cell number and [H-3]thymidine incorporation were significantly lower when F-OH was added. Under these conditions [H-3]mevalonate and [H-3]GG-OH are actively incorporated into a set of isoprenylated proteins in the size range of small, GTP-binding proteins (19-27 kDa) and a polypeptide with the molecular size (46 kDa) of the smaller isoform of 2',3'-cyclic nucleotide 3'-phosphodiesterase. Analysis of the proteins metabolically labeled by [H-3]mevalonate and [H-3]GG-OH reveals the presence of labeled proteins containing geranylgeranylated cysteinyl residues. Consistent with geranylgeranylated proteins playing a critical role in the entry of C6 cells into the cell cycle, a (phosphonoacetamido) oxy derivative of GG-OH, a drug previously shown to interfere with protein geranylgeranylation, prevented the increase in cell number when mevalonate or GG-OH was added to lovastatin-treated cells. These results strongly suggest that geranylgeranylated proteins are essential for progression of C6 cells into the S phase of the cell cycle and provide the first evidence that the "salvage" pathway for the utilization of the free isoprenols is physiologically significant in the CNS
Random walk with barriers: Diffusion restricted by permeable membranes
Restrictions to molecular motion by barriers (membranes) are ubiquitous in
biological tissues, porous media and composite materials. A major challenge is
to characterize the microstructure of a material or an organism
nondestructively using a bulk transport measurement. Here we demonstrate how
the long-range structural correlations introduced by permeable membranes give
rise to distinct features of transport. We consider Brownian motion restricted
by randomly placed and oriented permeable membranes and focus on the
disorder-averaged diffusion propagator using a scattering approach. The
renormalization group solution reveals a scaling behavior of the diffusion
coefficient for large times, with a characteristically slow inverse square root
time dependence. The predicted time dependence of the diffusion coefficient
agrees well with Monte Carlo simulations in two dimensions. Our results can be
used to identify permeable membranes as restrictions to transport in disordered
materials and in biological tissues, and to quantify their permeability and
surface area.Comment: 8 pages, 3 figures; origin of dispersion clarified, refs adde
Noradrenergic ‘Tone’ Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity
Norepinephrine (NE) is widely distributed throughout the brain. It modulates intrinsic currents, as well as amplitude and frequency of synaptic transmission affecting the ‘signal-to-noise ratio’ of sensory responses. In the visual cortex, α1- and β-adrenergic receptors (AR) gate opposing effects on long-term plasticity of excitatory transmission. Whether and how NE recruits these plastic mechanisms is not clear. Here, we show that NE modulates glutamatergic inputs with different efficacies for α1- and β-AR. As a consequence, the priming of synapses with different NE concentrations produces dose-dependent competing effects that determine the temporal window of spike-timing dependent plasticity (STDP). While a low NE concentration leads to long-term depression (LTD) over broad positive and negative delays, a high NE concentration results in bidirectional STDP restricted to very narrow intervals. These results indicate that the local availability of NE, released during emotional arousal, determines the compound modulatory effect and the output of STDP
A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale
In this era of complete genomes, our knowledge of neuroanatomical circuitry
remains surprisingly sparse. Such knowledge is however critical both for basic
and clinical research into brain function. Here we advocate for a concerted
effort to fill this gap, through systematic, experimental mapping of neural
circuits at a mesoscopic scale of resolution suitable for comprehensive,
brain-wide coverage, using injections of tracers or viral vectors. We detail
the scientific and medical rationale and briefly review existing knowledge and
experimental techniques. We define a set of desiderata, including brain-wide
coverage; validated and extensible experimental techniques suitable for
standardization and automation; centralized, open access data repository;
compatibility with existing resources, and tractability with current
informatics technology. We discuss a hypothetical but tractable plan for mouse,
additional efforts for the macaque, and technique development for human. We
estimate that the mouse connectivity project could be completed within five
years with a comparatively modest budget.Comment: 41 page
Giant capsids from lattice self-assembly of cyclodextrin complexes
Proteins can readily assemble into rigid, crystalline and functional structures such as viral capsids and bacterial compartments. Despite ongoing advances, it is still a fundamental challenge to design and synthesize protein-mimetic molecules to form crystalline structures. Here we report the lattice self-assembly of cyclodextrin complexes into a variety of capsidlike structures such as lamellae, helical tubes and hollow rhombic dodecahedra. The dodecahedral morphology has not hitherto been observed in self-assembly systems. The tubes can spontaneously encapsulate colloidal particles and liposomes. The dodecahedra and tubes are respectively comparable to and much larger than the largest known virus. In particular, the resemblance to protein assemblies is not limited to morphology but extends to structural rigidity and crystallinity-a well-defined, 2D rhombic lattice of molecular arrangement is strikingly universal for all the observed structures. We propose a simple design rule for the current lattice self-assembly, potentially opening doors for new protein-mimetic materials
The Thermodynamics of Virus Capsid Assembly
Virus capsid assembly is a critical step in the viral life cycle. The underlying basis of capsid stability is key to understanding this process. Capsid subunits interact with weak individual contact energies to form a globally stable icosahedral lattice; this structure is ideal for encapsidating the viral genome and host partners and protecting its contents upon secretion, yet the unique properties of its assembly and inter-subunit contacts allow the capsid to dissociate upon entering a new host cell. The stability of the capsid can be analyzed by treating capsid assembly as an equilibrium polymerization reaction, modified from the traditional polymer model to account for the fact that a separate nucleus is formed for each individual capsid. From the concentrations of reactants and products in an equilibrated assembly reaction, it is possible to extract the thermodynamic parameters of assembly for a wide array of icosahedral viruses using well-characterized biochemical and biophysical methods. In this chapter we describe this basic analysis and provide examples of thermodynamic assembly data for several different icosahedral viruses. These data provide new insights into the assembly mechanisms of spherical virus capsids, as well as into the biology of the viral life cycle
Recommended from our members
Sequence-modification in copoly(ester-imide)s: a catalytic/supramolecular approach to the evolution and reading of copolymer sequence-information
Catalytic ester-interchange reactions, analogous to mutation and recombination, allow new sequence-information to be written, statistically, into NDI-based poly(ester-imide) chains. Thus, both insertion of the cyclic ester cyclopentadecanolide ("exaltolide") into an NDI-based homopolymer, and quantitative sequence-exchange between two different homopoly(ester-imide)s, are catalysed by di-n-butyl tin(IV) oxide. Emerging sequences are identified at the triplet and quintet levels using supramolecular complexation of pyrene-d10 at the NDI residues to amplify the separation of 1H NMR resonances associated with different sequences. In such systems, pyrene is able to act as a "reader-molecule" by generating different levels of ring-current shielding from the different patterns of supramolecular binding to all the NDI-centred sequences of a given length
The demography of fine roots in response to patches of water and nitrogen
Fine root demography was quantified in response to patches of increased water and nitrogen availability in a natural, second-growth, mixed hardwood forest in northern Michigan, USA. As expected, the addition of water and water plus nitrogen resulted in a significant overall increase in the production of new fine roots. New root production was much greater in response to water plus nitrogen when compared with water alone, and the duration of new root production was related to the length of resource addition in the water plus nitrogen treatments; the average difference in new root length between the 20 vs. 40 d additions of water plus nitrogen amounted to almost 600%. Roots produced in response to the additions of water and water plus nitrogen lived longer than roots in the control treatments. Thus, additions of water and water plus nitrogen influenced both the proliferation of new roots and their longevity, with both proliferation and longevity related to the type and duration of resource supply. Results suggest that root longevity and mortality may be plastic in response to changes in soil resource availability, as is well known for root proliferation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65770/1/j.1469-8137.1993.tb03905.x.pd
- …