268 research outputs found

    Electronic wave functions and optical transitions in (In,Ga)As/GaP quantum dots

    Get PDF
    Robert, Cédric et al.We study the complex electronic band structure of low In content InGaAs/GaP quantum dots. A supercell extended-basis tight-binding model is used to simulate the electronic and the optical properties of a pure GaAs/GaP quantum dot modeled at the atomic level. Transitions between hole states confined into the dots and several XZ-like electronic states confined by the strain field in the GaP barrier are found to play the main role on the optical properties. Especially, the calculated radiative lifetime for such indirect transitions is in good agreement with the photoluminescence decay time measured in time-resolved photoluminescence in the µs range. Photoluminescence experiments under hydrostatic pressure are also presented. The redshift of the photoluminescence spectrum with pressure is also in good agreement with the nature of the electronic confined states simulated with the tight-binding model.A.R.G. and M.I.A. acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO) through Grant No. MAT2009-09480 (PIEZOHM) and Severo Ochoa Excellence Centre Award (No. SEV-2015-0496). M.O.N. acknowledges financial support from the Russian Foundation for Basic Research. This research is supported by “Region Bretagne” through the PONANT project including ´ FEDER funds. This paper is also supported by the OPTOSI Agence Nationale pour la Recherche Project No. 12-BS03- 002-02. This work has been performed using HPC resources of GENCI CINES, TGCC/CCRT, and IDRIS under the allocation No. 2013-[x2013096724].Peer reviewe

    GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    No full text
    International audienceGaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1µm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1µm and 0.3µm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising

    The Zika Virus Epidemic in Brazil: From Discovery to Future Implications.

    Get PDF
    The first confirmed case of Zika virus infection in the Americas was reported in Northeast Brazil in May 2015, although phylogenetic studies indicate virus introduction as early as 2013. Zika rapidly spread across Brazil and to more than 50 other countries and territories on the American continent. The Aedesaegypti mosquito is thought to be the principal vector responsible for the widespread transmission of the virus. However, sexual transmission has also been reported. The explosively emerging epidemic has had diverse impacts on population health, coinciding with cases of Guillain-Barré Syndrome and an unexpected epidemic of newborns with microcephaly and other neurological impairments. This led to Brazil declaring a national public health emergency in November 2015, followed by a similar decision by the World Health Organization three months later. While dengue virus serotypes took several decades to spread across Brazil, the Zika virus epidemic diffused within months, extending beyond the area of permanent dengue transmission, which is bound by a climatic barrier in the south and low population density areas in the north. This rapid spread was probably due to a combination of factors, including a massive susceptible population, climatic conditions conducive for the mosquito vector, alternative non-vector transmission, and a highly mobile population. The epidemic has since subsided, but many unanswered questions remain. In this article, we provide an overview of the discovery of Zika virus in Brazil, including its emergence and spread, epidemiological surveillance, vector and non-vector transmission routes, clinical complications, and socio-economic impacts. We discuss gaps in the knowledge and the challenges ahead to anticipate, prevent, and control emerging and re-emerging epidemics of arboviruses in Brazil and worldwide

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    Abrupt GaP/Si hetero-interface using bistepped Si buffer

    Get PDF
    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth

    A method for evaluating transport energy consumption in suburban areas

    Full text link
    peer reviewedUrban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that travelled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable life styles regarding transport habits.SAFE (Suburban Areas Favoring Energy efficiency

    Investigative safety strategies to improve success in drug development

    Get PDF
    Understanding and reducing attrition rate remains a key challenge in drug development. Preclinical and clinical safety issues still represent about 40% of drug discontinuation, of which cardiac and liver toxicities are the leading reasons. Reducing attrition rate can be achieved by various means, starting with a comprehensive evaluation of the potential safety issues associated to the primary target followed by an evaluation of undesirable secondary targets. To address these risks, a risk mitigation plan should be built at very early development stages, using a panel of in silico, in vitro, and in vivo models. While most pharmaceutical companies have developed robust safety strategies to de-risk genotoxicity and cardiotoxicity issues, partly driven by regulatory requirements; safety issues affecting other organs or systems, such as the central nervous system, liver, kidney, or gastro-intestinal system are less commonly addressed during early drug development. This paper proposes some de-risking strategies that can be applied to these target organ systems, including the use of novel biomarkers that can be easily integrated in both preclinical and clinical studies. Experiments to understand the mechanisms’ underlying toxicity are also important. Two examples are provided to demonstrate how such mechanistic studies can impact drug development. Novel trends in investigative safety are reviewed, such as computational modeling, mitochondrial toxicity assessment, and imaging technologies. Ultimately, understanding the predictive value of non-clinical safety testing and its translatability to humans will enable to optimize assays in order to address the key objectives of the drug discovery process, i.e., hazard identification, risk assessment, and mitigation

    Assessment of Yellow Fever Epidemic Risk: An Original Multi-criteria Modeling Approach

    Get PDF
    This article describes the use of an original modeling approach to assess the risk of yellow fever (YF) epidemics. YF is a viral hemorrhagic fever responsible in past centuries for devastating outbreaks. Since the 1930s, a vaccine has been available that protects the individual for at least 10 years, if not for life. However, immunization of populations in African countries was gradually discontinued after the 1960s. With the decrease in immunity against YF in African populations the disease reemerged in the 1980s. In 2005, WHO, UNICEF, and the GAVI Alliance decided to support preventive vaccination of at-risk populations in West African endemic countries in order to tackle the reemergence of YF and reduce the risk of urban YF outbreaks. Financial resources were made available to scale up a global YF vaccine stockpile and to support countries with limited resources in the management of preventive vaccination campaigns. This article describes the process we used to determine the most at-risk populations using a mathematical model to prioritize targeted immunization campaigns. We believe that this approach could be useful for other diseases for which decision making process is difficult because of limited data availability, complex risk variables, and a need for rapid decisions and implementation
    • …
    corecore