4,018 research outputs found

    Upregulation of Transglutaminase andε(γ-Glutamyl)-Lysine in the Fisher-Lewis Rat Model of Chronic Allograft Nephropathy

    Get PDF
    Background. Tissue transglutaminase (TG2), a cross-linking enzyme, modulates deposition of extracellular matrix protein in renal fibrosis. This study aimed to examine TG2 and its cross-link product ε(γ-glutamyl)-lysine in the Fisher-Lewis rat renal transplantation (RTx) model of chronic allograft nephropathy (CAN). Materials and Methods. Left renal grafts from male Fisher and Lewis were transplanted into Lewis rats, generating allografts and isografts, respectively. Blood pressure, renal function, and proteinuria were monitored for up to 52 weeks. At termination, CAN was assessed in the renal tissue by light and electron microscopy, TG2 and ε(γ-glutamyl)-lysine by immunofluorescence, and the urinary ε(γ-glutamyl)-lysine by high performance liquid chromatography. Results. Compared to the isograft, the allografts were hypertensive, proteinuric, and uraemic and developed CAN. Extracellular TG2 (glomerulus: 64.55 + 17.61 versus 2.11 + 0.17, P<0.001; interstitium: 13.72 + 1.62 versus 3.19 + 0.44, P<0.001), ε(γ-glutamyl)-lysine (glomerulus: 21.74 + 2.71 versus 1.98 + 0.37, P<0.01; interstitium: 37.96 + 17.06 versus 0.42 + 0.11, P<0.05), TG2 enzyme activity (1.09 + 0.13 versus 0.41 + 0.03 nmol/h/mg protein, P<0.05), TG2 mRNA (20-fold rise), and urinary ε(γ-glutamyl)-lysine (534.2 + 198.4 nmol/24 h versus 57.2 + 4.1 nmol/24 h,P<0.05) levels were significantly elevated in the allografts and showed a positive linear correlation with tubulointerstitial fibrosis. Conclusion. CAN was associated with upregulation of renal TG2 pathway, which has a potential for pharmacological intervention. The elevated urinary ε(γ-glutamyl)-lysine, measured for the first time in RTx, is a potential biomarker of CA

    GRADUAL CHANGES IN SNOW PEAKS IN UPPER INDUS BASIN, PAKISTAN: A GOOGLE EARTH BASED REVIEW

    Get PDF
    The&nbsp;hydrology&nbsp;and climate of mid to high-latitude mountainous areas are significantly impacted by snow cover. Since adding or removing snow cover significantly impacts the snowpack’s capacity to operate as a reservoir for water storage, the snowfall-dominated basins of mid- to higher latitudes are anticipated to see the largest shifts in the hydrological cycle because of global warming. By moving the time slider in the historical imagery feature of Google Earth Pro, the Upper Indus Basin study area was examined from the years 1984 to 2020 to track changes in the snow cover. All observations were made with longitude and latitude at 35o, 34', 51.79" N and 74o, 34', 24.21" E, and the eye altitude at 344.46 miles. Google Earth captured pictures of all the observations on December 31st of every year. The data from 1984 to 2020 was examined keenly, and it was observed that as time goes on, global warming is showing its effects and producing climate changes, which has a negative impact on the region's snow and glacier availability. The Landsat images make it abundantly evident that the lower areas of the upper Indus Basin's snow cover are more negatively impacted than the downstream side areas due to the variation in altitude. The authors also referred to the research work by other researchers in the study to compare with their work. The study observed that some areas were utterly showing no snow in 2020 as compared to 1984 as time moved on with an increase in global warming in 36 years

    Individual Tree Species Classification from Airborne Multisensor Imagery Using Robust PCA

    Get PDF
    Remote sensing of individual tree species has many applications in resource management, biodiversity assessment, and conservation. Airborne remote sensing using light detection and ranging (LiDAR) and hyperspectral sensors has been used extensively to extract biophysical traits of vegetation and to detect species. However, its application for individual tree mapping remains limited due to the technical challenges of precise coalignment of images acquired from different sensors and accurately delineating individual tree crowns (ITCs). In this study, we developed a generic workflow to map tree species at ITC level from hyperspectral imagery and LiDAR data using a combination of well established and recently developed techniques. The workflow uses a nonparametric image registration approach to coalign images, a multiclass normalized graph cut method for ITC delineation, robust principal component analysis for feature extraction, and support vector machine for species classification. This workflow allows us to automatically map tree species at both pixel- and ITC-level. Experimental tests of the technique were conducted using ground data collected from a fully mapped temperate woodland in the UK. The overall accuracy of pixel-level classification was 91%, while that of ITC-level classification was 61%. The test results demonstrate the effectiveness of the approach, and in particular the use of robust principal component analysis to prune the hyperspectral dataset and reveal subtle difference among species.Department for Environment, Food and Rural AffairsThis is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/JSTARS.2016.256940

    Phytoestrogen agathisflavone ameliorates neuroinflammation-induced by LPS and IL-1β and protects neurons in cocultures of glia/neurons

    Get PDF
    Inflammation and oxidative stress are common aspects of most neurodegenerative diseases in the central nervous system. In this context, microglia and astrocytes are central to mediating the balance between neuroprotective and neurodestructive mechanisms. Flavonoids have potent anti-inflammatory and antioxidant properties. Here, we have examined the anti-inflammatory and neuroprotective potential of the flavonoid agathisflavone (FAB), which is derived from the Brazilian plant Poincianella pyramidalis, in in vitro models of neuroinflammation. Cocultures of neurons/glial cells were exposed to lipopolysaccharide (LPS, 1 µg/mL) or interleukin (IL)-1β (10 ng/mL) for 24 h and treated with FAB (0.1 and 1 µM, 24 h). FAB displayed a significant neuroprotective effect, as measured by nitric oxide (NO) production, Fluoro-Jade B (FJ-B) staining, and immunocytochemistry (ICC) for the neuronal marker β-tubulin and the cell death marker caspase-3, preserving neuronal soma and increasing neurite outgrowth. FAB significantly decreased the LPS-induced microglial proliferation, identified by ICC for Iba-1/bromodeoxyuridine (BrdU) and CD68 (microglia M1 profile marker). In contrast, FAB had no apparent effect on astrocytes, as determined by ICC for glial fibrillary acidic protein (GFAP). Furthermore, FAB protected against the cytodestructive and proinflammatory effects of IL-1β, a key cytokine that is released by activated microglia and astrocytes, and ICC showed that combined treatment of FAB with α and β estrogen receptor antagonists did not affect NF-κB expression. In addition, qPCR analysis demonstrated that FAB decreased the expression of proinflammatory molecules TNF-α, IL-1β, and connexins CCL5 and CCL2, as well as increased the expression of the regulatory molecule IL-10. Together, these findings indicate that FAB has a significant neuroprotective and anti-inflammatory effect in vitro, which may be considered as an adjuvant for the treatment of neurodegenerative diseases

    Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer's disease

    Get PDF
    Neurodegenerative disorders (ND) are characterized by the progressive and irreversible loss of neurons. Alzheimer’s Disease (AD) is the most incident age-related ND, in which the presence of a chronic inflammatory compound seems to be related to its pathogenesis. Different stimuli in the central nervous system (CNS) can induce activation, proliferation, and changes in phenotype and glial function, which can be modulated by anti-inflammatory agents. Apigenin (4,5,7–trihydroxyflavone) is a flavonoid found in abundance in many fruits and vegetables, that has shown important effects upon controlling the inflammatory response. This study evaluated the neuroprotective and neuroimmunomodulatory potential of apigenin using in vitro models of neuroinflammation associated with AD. Co-cultures of neurons and glial cells were obtained from the cortex of newborn and embryonic Wistar rats. After 26 days in vitro, cultures were exposed to lipopolysaccharide (LPS; 1 μg/ml), or IL-1β (10 ng/ml) for 24 h, or to Aβ oligomers (500 nM) for 4 h, and then treated with apigenin (1 μM) for further 24 h. It was observed that the treatment with apigenin preserved neurons and astrocytes integrity, determined by Rosenfeld’s staining and immunocytochemistry for β-tubulin III and GFAP, respectively. Moreover, it was observed by Fluoro-Jade-B and caspase-3 immunostaining that apigenin was not neurotoxic and has a neuroprotective effect against inflammatory damage. Additionally, apigenin reduced microglial activation, characterized by inhibition of proliferation (BrdU+ cells) and modulation of microglia morphology (Iba-1 + cells), and decreased the expression of the M1 inflammatory marker CD68. Moreover, as determined by RT-qPCR, inflammatory stimuli induced by IL-1β increased the mRNA expression of IL-6, IL-1β, and CCL5, and decreased the mRNA expression of IL-10. Contrary, after treatment with apigenin in inflammatory stimuli (IL-1β or LPS) there was a modulation of the mRNA expression of inflammatory cytokines, and reduced expression of OX42, IL-6 and gp130. Moreover, apigenin alone and after an inflammatory stimulus with IL-1β also induced the increase in the expression of brain-derived neurotrophic factor (BDNF), an effect that may be associated with anti-inflammatory and neuroprotective effects. Together these data demonstrate that apigenin presents neuroprotective and anti-inflammatory effects in vitro and might represent an important neuroimmunomodulatory agent for the treatment of neurodegenerative conditions

    Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector

    Get PDF
    BackgroundThe use of entomopathogenic fungi (EPF) for the control of adult mosquitoes is a promising alternative to synthetic insecticides. Previous studies have only evaluated conidiospores against adult mosquitoes. However, blastospores, which are highly virulent against mosquito larvae and pupae, could also be effective against adults.MethodsMetarhizium anisopliae (ESALQ 818 and LEF 2000) blastospores and conidia were first tested against adult Aedes aegypti by spraying insects with spore suspensions. Blastospores were then tested using an indirect contact bioassay, exposing mosquitoes to fungus-impregnated cloths. Virulence when using blastospores suspended in 20% sunflower oil was also investigated.ResultsFemale mosquitoes sprayed with blastospores or conidia at a concentration of 108 propagules ml−1 were highly susceptible to both types of spores, resulting in 100% mortality within 7 days. However, significant differences in virulence of the isolates and propagules became apparent at 107 spores ml−1, with ESALQ 818 blastospores being more virulent than LEF 2000 blastospores. ESALQ 818 blastospores were highly virulent when mosquitoes were exposed to black cotton cloths impregnated with blastospores shortly after preparing the suspensions, but virulence declined rapidly 12 h post-application. The addition of vegetable oil to blastospores helped maintain virulence for up to 48 h.ConclusionThe results showed that blastospores were more virulent to adult female Ae. aegypti than conidia when sprayed onto the insects or applied to black cloths. Vegetable oil helped maintain blastospore virulence. The results show that blastospores have potential for use in integrated vector management, although new formulations and drying techniques need to be investigated

    The flavonoid agathisflavone modulates the microglial neuroinflammatory response and enhances remyelination

    Get PDF
    Myelin loss is the hallmark of the demyelinating disease multiple sclerosis (MS) and plays a significant role in multiple neurodegenerative diseases. A common factor in all neuropathologies is the central role of microglia, the intrinsic immune cells of the central nervous system (CNS). Microglia are activated in pathology and can have both pro- and anti-inflammatory functions. Here, we examined the effects of the flavonoid agathisflavone on microglia and remyelination in the cerebellar slice model following lysolecithin induced demyelination. Notably, agathisflavone enhances remyelination and alters microglial activation state, as determined by their morphology and cytokine profile. Furthermore, these effects of agathisflavone on remyelination and microglial activation were inhibited by blockade of estrogen receptor α. Thus, our results identify agathisflavone as a novel compound that may act via ER to regulate microglial activation and enhance remyelination and repair

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure
    • …
    corecore