1,376 research outputs found

    Tuneable molecular doping of corrugated graphene

    Full text link
    Density functional theory (DFT) modeling of the physisorption of four different types of molecules (toluene, bromine dimmer, water and nitrogen dioxide) over and above graphene ripples has been performed. For all types of molecules changes of charge transfer and binding energies in respect to flat graphene is found. The changes in electronic structure of corrugated graphene and turn of {\pi}-orbitals of carbon atoms in combination with chemical structure of adsorbed molecules are proposed as the causes of difference with the perfect graphene case and variety of adsorption properties of different types of the molecules. Results of calculation suggest that the tops of the ripples are more attractive for large molecules and valley between ripples for small molecules. Stability of molecules on the ripples and energy barriers for migration over flat and corrugated graphene is also discussed.Comment: 15 pages, 5 figures, accepted in Surface Scienc

    SU(3) lattice gauge theory with a mixed fundamental and adjoint plaquette action: Lattice artefacts

    Full text link
    We study the four-dimensional SU(3) gauge model with a fundamental and an adjoint plaquette term in the action. We investigate whether corrections to scaling can be reduced by using a negative value of the adjoint coupling. To this end, we have studied the finite temperature phase transition, the static potential and the mass of the 0^{++} glueball. In order to compute these quantities we have implemented variance reduced estimators that have been proposed recently. Corrections to scaling are analysed in dimensionless combinations such as T_c/\sqrt{\sigma} and m_{0^{++}}/T_c. We find that indeed the lattice artefacts in e.g. m_{0^{++}}/T_c can be reduced considerably compared with the pure Wilson (fundamental) gauge action at the same lattice spacing.Comment: 36 pages, 12 figure

    Supporting learning with 3D interactive applications in early years

    Full text link
    Early years education is an key element for the introduction of children in the education system. In order to improve this process, the aim of this study was to explore how guided interaction with 3D apps can fit into a preschool setting, how it can help children learn through playing and how it can improve their learning outcomes. A study was conducted with six classes of 87 students aged between 3 years to 6 years, over a 12-week period. Children used 10 inch Android tablets with a series of apps developed by our research team, about houses of the world, the skeleton & five senses and, animals. A quasi-experimental design based on a nonequivalent groups pretest and posttest de-sign revealed that an active behavior and better learning outcomes are obtained by children participating in the experimental groupCascales Martínez, A.; Martínez Segura, MJ.; Laguna- Segobia, M.; Pérez Lopez, DC.; Contero, M. (2014). Supporting learning with 3D interactive applications in early years. Lecture Notes in Computer Science. 8524:11-22. doi:10.1007/978-3-319-07485-6_2S11228524Plowman, L., Stephen, C.: Children, Play and Computers in Preschool Education. British Journal of Educational Technology 36(2), 145–157 (2005)Tootell, H., Plumb, M., Hadfield, C., Dawson, L.: Gestural Interface Technology in early childhood education: A framework for fully-engaged communication. In: Proceedings of the Annual Hawaii International Conference on System Sciences, art. no. 6479836, pp. 13–20 (2013)Marco, J., Cerezo, E.: Bringing Tabletop Technologies to Kindergarten Children. In: HCI 2009 International Conference on Human-Computer Interaction–Celebrating People and Technology, pp. 103–111. Springer, Heidelberg (2009)Heft, T.M., Swaminathan, S.: Using Computers in Early Childhood Classrooms: Teachers’ Attitudes, Skills and Practices. Journal of Early Childhood Research 6(4), 169–188 (2006)Wang, X.C., Ching, C.C.: Social Construction of Computer Experience in a First-Grade Classroom: Social Processes and Mediating Artifacts. Early Education and Development 14(3), 335–361 (2003)Couse, L.J., Chen, D.W.: A Tablet Computer for Young Children? Exploring Its Viability for Early Childhood Education. Journal of Research on Technology in Education 43(1), 75–98 (2012)Kearney, J.: Educating Young Children - Learning and Teaching in the Early Childhood Years. Early Childhood Teachers’ Association (ECTA Inc.) 3(18) (2012)Rankothge, W.H., Sendanayake, S.V., Sudarshana, R.G.P., Balasooriya, B.G.G.H., Alahapperuma, D.R., Mallawarachchi, Y.: Technology Assisted Tool for Learning Skills Development in Early Childhood. In: Proc. of 2012 International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 165–168 (2012)Sandvik, M., Smørdal, O., Østerud, S.: Exploring iPads in Practitioners’ Repertoires for Language Learning and Literacy Practices In Kindergarten. Nordic Journal of Digital Literacy 3(7), 204–221 (2012)Priyankara, K.W.T.G.T., Mahawaththa, D.C., Nawinna, D.P., Jayasundara, J.M.A., Tharuka, K.D.N., Rajapaksha, S.K.: Android Based e-Learning Solution for Early Childhood Education in Sri Lanka. In: Proceedings of the 8th International Conference on Computer Science & Education (ICCSE), pp. 715–718 (2013)Zanchi, C., Presser, A.L., Vahey, P.: Next Generation Preschool Math Demo: Tablet Games for Preschool Classrooms. In: Proceedings of the 12th International Conference on Interaction Design and Children, IDC 2013, pp. 527–530 (2013)Meyer, B.: Game-based Language Learning for Pre-School Children: A Design Perspective. Electronic Journal of e-Learning 11(1), 39–48 (2013)Straub, D.W.: Validating Instruments in MIS Research. MIS Quarterly 13(2), 147–169 (1989)Cook, T.D., Campbell, D.T., Day, A.: Quasi-experimentation: Design and Analysis Issues for Field Settings, pp. 19–21. Houghton Mifflin, Boston (1979)Buendía, L., Y Berrocal, E.: La Ética de la Investigación Educativa. Ágora Digital 1 (2011)Tojar, J., Serrano, J.: Ética e Investigación Educativa. RELIEVE 6(2) (2000)Cascales, A., Laguna, I., Pérez-López, D., Perona, P., Contero, M.: 3D Interactive Applications on Tablets for Preschoolers: Exploring the Human Skeleton and the Senses. In: Hernández-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds.) EC-TEL 2013. LNCS, vol. 8095, pp. 71–83. Springer, Heidelberg (2013

    On the relationship between continuous- and discrete-time quantum walk

    Full text link
    Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.Comment: 22 pages. v2: improved presentation, new section on Hamiltonian oracles; v3: published version, with improved analysis of phase estimatio

    Random fields on model sets with localized dependency and their diffraction

    Full text link
    For a random field on a general discrete set, we introduce a condition that the range of the correlation from each site is within a predefined compact set D. For such a random field omega defined on the model set Lambda that satisfies a natural geometric condition, we develop a method to calculate the diffraction measure of the random field. The method partitions the random field into a finite number of random fields, each being independent and admitting the law of large numbers. The diffraction measure of omega consists almost surely of a pure-point component and an absolutely continuous component. The former is the diffraction measure of the expectation E[omega], while the inverse Fourier transform of the absolutely continuous component of omega turns out to be a weighted Dirac comb which satisfies a simple formula. Moreover, the pure-point component will be understood quantitatively in a simple exact formula if the weights are continuous over the internal space of Lambda Then we provide a sufficient condition that the diffraction measure of a random field on a model set is still pure-point.Comment: 21 page

    Orbital order in the low-dimensional quantum spin system TiOCl probed by ESR

    Full text link
    We present electron spin resonance data of Ti3+^{3+} (3d1d^1) ions in single crystals of the novel layered quantum spin magnet TiOCl. The analysis of the g tensor yields direct evidence that the d_{xy} orbital from the t_{2g} set is predominantly occupied and owing to the occurrence of orbital order a linear spin chain forms along the crystallographic b axis. This result corroborates recent theoretical LDA+U calculations of the band structure. The temperature dependence of the parameters of the resonance signal suggests a strong coupling between spin and lattice degrees of freedom and gives evidence for a transition to a nonmagnetic ground state at 67 K.Comment: revised version, accepted for publication in Phys. Rev. B, Rapid Com

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    phosphorus and potassium fertilizer effects on alfalfa and soil in a non limited soil

    Get PDF
    Fertilization strategies for high-yielding alfalfa (Medicago sativa L.) should take in account the increase in soil nutritional status that occurred during the last decades in areas with intensive agricultural use. A field study was conducted at the University of Padova, northeastern Italy, to determine the response of alfalfa yield and nutritive value to various combinations of P and K rates in a soil lacking nutrient deficiency. Alfalfa cultivar Delta was seeded in March 2005 on a silt loam soil having 38 mg kg -1 available P and 178 mg kg -1 exchangeable K. Nine treatments deriving from the combination of three P fertilization rates (0, 100, and 200 kg ha -1 P 2 O 5 ) and three K rates (0, 300, and 600 kg ha -1 K 2 O) were compared in a randomized complete block design. Plots were harvested at bud stage during three growing seasons (2005-2007) and dry matter (DM) yield, forage nutritive value, P and K contents, canopy height, and stem density were measured at each harvest. Soil samples were collected at the end of the research period for determination of available P and exchangeable K. The results demonstrated that P application had no impact on yield and did not interact with K in determining productivity, while K had a positive effect on yield. However, the 300 kg ha -1 K 2 O rate appeared sufficient to maximize yield, without adverse effects on the forage nutritive value. Data from soil analyses showed that alfalfa has a high K uptake even when it is fertilized at high rates
    corecore