520 research outputs found
Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model
[EN] This study was conducted to demonstrate how a vitrified embryo transfer procedure incurs phenotypic and molecular changes throughout life. This study reports the first evidence describing that embryonic manipulation during a vitrified embryo transfer cycle induced molecular modifications, concerning oxidative phosphorylation and dysregulations in zinc and lipid metabolism in liver tissue, which has been reported as responsible for postnatal variations of the phenotype. Nowadays, assisted reproductive technologies (ARTs) are considered valuable contributors to our past, but a future without their use is inconceivable. However, in recent years, several studies have evidenced a potential impact of ART on long-term development in mammal species. To date, the long-term follow-up data are still limited. So far, studies have mainly focused on in vitro fertilization or in vitro culture, with information from gametes/embryos cryopreservation field being practically missing. Herein, we report an approach to determine whether a vitrified embryo transfer procedure would have long-term consequences on the offspring. Using the rabbit as a model, we compared animals derived from vitrified-transferred embryos versus those naturally conceived, studying the growth performance, plus the weight throughout life, and the internal organs/tissues phenotype. The healthy status was assessed over the hematological and biochemical parameters in peripheral blood. Additionally, a comparative proteomic analysis was conducted in the liver tissue to investigate molecular cues related to vitrified embryo transfer in an adult tissue. After vitrified embryo transfer, birth weight was increased, and the growth performance was diminished in a sex-specific manner. In addition, vitrified-transferred animals showed significantly lower body, liver and heart weights in adulthood. Molecular analyses revealed that vitrified embryo transfer triggers reprogramming of the liver proteome. Functional analysis of the differentially expressed proteins showed changes in relation to oxidative phosphorylation and dysregulations in the zinc and lipid metabolism, which has been reported as possible causes of a disturbed growth pattern. Therefore, we conclude that vitrified embryo transfer is not a neutral procedure, and it incurs long-term effects in the offspring both at phenotypic and molecular levels. These results described a striking example of the developmental plasticity exhibited by the mammalian embryo.Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R and AGL2014-53405-C2-1-P) is acknowledged. X.G.D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429).Garcia-Dominguez, X.; Marco-Jiménez, F.; Peñaranda, D.; Vicente Antón, JS. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals. 10(6):1-16. https://doi.org/10.3390/ani10061043S116106Crawford, G., & Ledger, W. (2018). In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG: An International Journal of Obstetrics & Gynaecology, 126(2), 237-243. doi:10.1111/1471-0528.15526Findlay, J. K., Holland, M. K., & Wong, B. B. M. (2019). Reproductive science and the future of the planet. Reproduction, 158(3), R91-R96. doi:10.1530/rep-18-0640Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xFeuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xDuranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589Fischer, B., Chavatte-Palmer, P., Viebahn, C., Navarrete Santos, A., & Duranthon, V. (2012). Rabbit as a reproductive model for human health. REPRODUCTION, 144(1), 1-10. doi:10.1530/rep-12-0091Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690-690. doi:10.1038/465690aKineman, R. D., del Rio-Moreno, M., & Sarmento-Cabral, A. (2018). 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. Journal of Molecular Endocrinology, 61(1), T187-T198. doi:10.1530/jme-18-0076Adamek, A., & Kasprzak, A. (2018). Insulin-Like Growth Factor (IGF) System in Liver Diseases. International Journal of Molecular Sciences, 19(5), 1308. doi:10.3390/ijms19051308Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025Ding, C., Li, Y., Guo, F., Jiang, Y., Ying, W., Li, D., … He, F. (2016). A Cell-type-resolved Liver Proteome. Molecular & Cellular Proteomics, 15(10), 3190-3202. doi:10.1074/mcp.m116.060145Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850-858. doi:10.1021/ac950914hShilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., … Schaeffer, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Molecular & Cellular Proteomics, 6(9), 1638-1655. doi:10.1074/mcp.t600050-mcp200Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., … Vizcaíno, J. A. (2018). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47(D1), D442-D450. doi:10.1093/nar/gky1106Moore, D. M., Zimmerman, K., & Smith, S. A. (2015). Hematological Assessment in Pet Rabbits. Clinics in Laboratory Medicine, 35(3), 617-627. doi:10.1016/j.cll.2015.05.010MA Kamel, R. (2013). Assisted Reproductive Technology after the birth of Louise Brown. Gynecology & Obstetrics, 03(03). doi:10.4172/2161-0932.1000156Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010Cifre, J., Baselga, M., Gómez, E. A., & de la Luz, G. M. (1999). Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Annales de Zootechnie, 48(1), 15-24. doi:10.1051/animres:19990102Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935Hann, M., Roberts, S. A., D’Souza, S. W., Clayton, P., Macklon, N., & Brison, D. R. (2018). The growth of assisted reproductive treatment-conceived children from birth to 5 years: a national cohort study. BMC Medicine, 16(1). doi:10.1186/s12916-018-1203-7Chen, Z., Robbins, K. M., Wells, K. D., & Rivera, R. M. (2013). Large offspring syndrome. Epigenetics, 8(6), 591-601. doi:10.4161/epi.24655Gidenne, T., Combes, S., Feugier, A., Jehl, N., Arveux, P., Boisot, P., … Verdelhan, S. (2009). Feed restriction strategy in the growing rabbit. 2. Impact on digestive health, growth and carcass characteristics. Animal, 3(4), 509-515. doi:10.1017/s1751731108003790Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(2), 590-600. doi:10.1016/j.bbadis.2017.11.020Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M. A., … Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proceedings of the National Academy of Sciences, 101(16), 5880-5885. doi:10.1073/pnas.0308560101Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640Hyatt, M. A., Budge, H., & Symonds, M. E. (2008). Early developmental influences on hepatic organogenesis. Organogenesis, 4(3), 170-175. doi:10.4161/org.4.3.6849Møller, S., & Bernardi, M. (2013). Interactions of the heart and the liver. European Heart Journal, 34(36), 2804-2811. doi:10.1093/eurheartj/eht246Peterside, I. E., Selak, M. A., & Simmons, R. A. (2003). Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. American Journal of Physiology-Endocrinology and Metabolism, 285(6), E1258-E1266. doi:10.1152/ajpendo.00437.2002Von Kleist-Retzow, J.-C., Cormier-Daire, V., Viot, G., Goldenberg, A., Mardach, B., Amiel, J., … De Lonlay, P. (2003). Antenatal manifestations of mitochondrial respiratory chain deficiency. The Journal of Pediatrics, 143(2), 208-212. doi:10.1067/s0022-3476(03)00130-6Hüttemann, M., Lee, I., Samavati, L., Yu, H., & Doan, J. W. (2007). Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(12), 1701-1720. doi:10.1016/j.bbamcr.2007.10.001Gibson, K., Halliday, J. L., Kirby, D. M., Yaplito-Lee, J., Thorburn, D. R., & Boneh, A. (2008). Mitochondrial Oxidative Phosphorylation Disorders Presenting in Neonates: Clinical Manifestations and Enzymatic and Molecular Diagnoses. PEDIATRICS, 122(5), 1003-1008. doi:10.1542/peds.2007-3502Abu-Libdeh, B., Douiev, L., Amro, S., Shahrour, M., Ta-Shma, A., Miller, C., … Saada, A. (2017). Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. European Journal of Human Genetics, 25(10), 1142-1146. doi:10.1038/ejhg.2017.112Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., & Iwata, H. (2018). Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLOS ONE, 13(10), e0204571. doi:10.1371/journal.pone.0204571Singh, A., Prasad, K. N., Singh, A. K., Singh, S. K., Gupta, K. K., Paliwal, V. K., … Gupta, R. K. (2016). Human Glutathione S-Transferase Enzyme Gene Polymorphisms and Their Association With Neurocysticercosis. Molecular Neurobiology, 54(4), 2843-2851. doi:10.1007/s12035-016-9779-4Almazroo, O. A., Miah, M. K., & Venkataramanan, R. (2017). Drug Metabolism in the Liver. Clinics in Liver Disease, 21(1), 1-20. doi:10.1016/j.cld.2016.08.001Bird, A. J. (2015). Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. The Journal of Nutritional Biochemistry, 26(11), 1103-1115. doi:10.1016/j.jnutbio.2015.08.002Xia, X., Jiang, S.-W., Zhang, Y., Hu, Y., Yi, H., Liu, J., … Liu, J. (2019). Serum levels of trace elements in children born after assisted reproductive technology. Clinica Chimica Acta, 495, 664-669. doi:10.1016/j.cca.2018.09.032Li, B., Xiao, X., Chen, S., Huang, J., Ma, Y., Tang, N., … Wang, X. (2016). Changes of Phospholipids in Fetal Liver of Mice Conceived by In Vitro Fertilization1. Biology of Reproduction, 94(5). doi:10.1095/biolreprod.115.136325Guo, X.-Y., Liu, X.-M., Jin, L., Wang, T.-T., Ullah, K., Sheng, J.-Z., & Huang, H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5. doi:10.1016/j.fertnstert.2016.12.007Miles, H. L., Hofman, P. L., Peek, J., Harris, M., Wilson, D., Robinson, E. M., … Cutfield, W. S. (2007). In Vitro Fertilization Improves Childhood Growth and Metabolism. The Journal of Clinical Endocrinology & Metabolism, 92(9), 3441-3445. doi:10.1210/jc.2006-246
Feed restriction regime in a rabbit line selected for growth rate alters oocyte maturation manifested by alteration in msy2 gene expression
[EN] Young rabbit females selected for growth rate may have nutritional needs, which may not be met with the common practice of feed restriction during rearing in commercial rabbit production. The aim of this study was to analyse whether two different feeding programmes: ad libitum or restricted (130 g/day) feeding, applied in young rabbit females for 1 month at the end of rearing, could modulate the origin of ovulation process and the quality of the oocytes. At 16 weeks of age, 34 females were randomly assigned to restricted or ad libitum feeding, maintaining these conditions for a month. Then, in an initial experiment, transcriptional profiling of hypothalamus-hypophysis tissue was performed to assess failure to ovulate. In the second experiment, the gene expression analysis of some candidate genes related to oocytes quality was performed. Our results demonstrated that neither of the two feeding programmes modified the transcription of hypothalamus-hypophysis tissue, while the only differences in MSYR expression were found in in vivo mature oocytes ready for successful fertilization. Specifically, MSYR was over-expressed in oocytes from females fed ad libitum. MSYR is one of the most abundant proteins in the oocyte and has proven to be a key regulator of maternal RNA transcription and translation. This finding suggests that MSYR gene is a promising gene in our understanding of the relationship between high growth rate and reproductive performance decline.This work was supported by the Spanish Research Projects AGL2014-53405-C2-P and AGL2011-30170-C02-01 (CICYT). Carmen Naturil was supported by a research grant from the Education Ministry of the Valencian Regional Government (programme VALi+d. ACIF/2013/296).Naturil Alfonso, C.; Peñaranda, D.; Vicente Antón, JS.; Marco-Jiménez, F. (2017). Feed restriction regime in a rabbit line selected for growth rate alters oocyte maturation manifested by alteration in msy2 gene expression. Reproduction in Domestic Animals. 52(6):976-984. https://doi.org/10.1111/rda.13006S976984526Alexander, B. M., Kiyma, Z., McFarland, M., Van Kirk, E. A., Hallford, D. M., Hawkins, D. E., … Moss, G. E. (2007). Influence of short-term fasting during the luteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes. Animal Reproduction Science, 97(3-4), 356-363. doi:10.1016/j.anireprosci.2006.01.012Armstrong, D. G., McEvoy, T. G., Baxter, G., Robinson, J. J., Hogg, C. O., Woad, K. J., … Sinclair, K. D. (2001). Effect of Dietary Energy and Protein on Bovine Follicular Dynamics and Embryo Production In Vitro: Associations with the Ovarian Insulin-Like Growth Factor System1. Biology of Reproduction, 64(6), 1624-1632. doi:10.1095/biolreprod64.6.1624Ashworth, C. J., Beattie, L., & Antipatis, C. (1999). Effects of pre- and post-mating nutritional status on hepatic function, progesterone concentration, uterine protein secretion and embryo survival in Meishan pigs. Reproduction, Fertility and Development, 11(1), 67. doi:10.1071/rd99007Ashworth, C. J., Beattie, L., Antipatis, C., & Vallet, J. L. (1999). Effects of pre- and post-mating feed intake on blastocyst size, secretory function and glucose metabolism in Meishan gilts. Reproduction, Fertility and Development, 11(6), 323. doi:10.1071/rd99040Balasubramanian, P., Jagannathan, L., Mahaley, R. E., Subramanian, M., Gilbreath, E. T., MohanKumar, P. S., & MohanKumar, S. M. J. (2012). High Fat Diet Affects Reproductive Functions in Female Diet-Induced Obese and Dietary Resistant Rats. Journal of Neuroendocrinology, 24(5), 748-755. doi:10.1111/j.1365-2826.2011.02276.xBoland, M. P., Lonergan, P., & O’Callaghan, D. (2001). Effect of nutrition on endocrine parameters, ovarian physiology, and oocyte and embryo development. Theriogenology, 55(6), 1323-1340. doi:10.1016/s0093-691x(01)00485-xBrecchia, G., Bonanno, A., Galeati, G., Federici, C., Maranesi, M., Gobbetti, A., … Boiti, C. (2006). Hormonal and metabolic adaptation to fasting: Effects on the hypothalamic–pituitary–ovarian axis and reproductive performance of rabbit does. Domestic Animal Endocrinology, 31(2), 105-122. doi:10.1016/j.domaniend.2005.09.006Daoud, N. M., Mahrous, K. F., & Ezzo, O. H. (2012). Feed restriction as a biostimulant of the production of oocyte, their quality and GDF-9 gene expression in rabbit oocytes. Animal Reproduction Science, 136(1-2), 121-127. doi:10.1016/j.anireprosci.2012.09.011De la Fuente, L. F., & Rosell, J. M. (2012). Body weight and body condition of breeding rabbits in commercial units1. Journal of Animal Science, 90(9), 3252-3258. doi:10.2527/jas.2011-4764Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527Ferguson, E., Ashworth, C., Edwards, S., Hawkins, N., Hepburn, N., & Hunter, M. (2003). Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction, 61-71. doi:10.1530/rep.0.1260061García-García, R. M., Rebollar, P. G., Arias-Álvarez, M., Sakr, O. G., Bermejo-Álvarez, P., Brecchia, G., … Lorenzo, P. L. (2011). Acute fasting before conception affects metabolic and endocrine status without impacting follicle and oocyte development and embryo gene expression in the rabbit. Reproduction, Fertility and Development, 23(6), 759. doi:10.1071/rd10298Gerke, V., Creutz, C. E., & Moss, S. E. (2005). Annexins: linking Ca2+ signalling to membrane dynamics. Nature Reviews Molecular Cell Biology, 6(6), 449-461. doi:10.1038/nrm1661Gerstner, J. R., & Landry, C. F. (2006). Expression of the Transcriptional Coactivator CITED1 in the Adult and Developing Murine Brain. Developmental Neuroscience, 29(3), 203-212. doi:10.1159/000096389Gil, S. Y., Youn, B.-S., Byun, K., Huang, H., Namkoong, C., Jang, P.-G., … Kim, M.-S. (2013). Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nature Communications, 4(1). doi:10.1038/ncomms2896Gu, W., Tekur, S., Reinbold, R., Eppig, J. J., Choi, Y.-C., Zheng, J. Z., … Hecht, N. B. (1998). Mammalian Male and Female Germ Cells Express a Germ Cell-Specific Y-Box Protein, MSY21. Biology of Reproduction, 59(5), 1266-1274. doi:10.1095/biolreprod59.5.1266Haider, S., & Knöfler, M. (2009). Human Tumour Necrosis Factor: Physiological and Pathological Roles in Placenta and Endometrium. Placenta, 30(2), 111-123. doi:10.1016/j.placenta.2008.10.012Han, J., & Townes-Anderson, E. (2012). Cell Specific Post-Translational Processing of Pikachurin, A Protein Involved in Retinal Synaptogenesis. PLoS ONE, 7(12), e50552. doi:10.1371/journal.pone.0050552Jung, U., & Choi, M.-S. (2014). Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 15(4), 6184-6223. doi:10.3390/ijms15046184Kiyma, Z., Alexander, B. M., Van Kirk, E. A., Murdoch, W. J., Hallford, D. M., & Moss, G. E. (2004). Effects of feed restriction on reproductive and metabolic hormones in ewes. Journal of Animal Science, 82(9), 2548-2557. doi:10.2527/2004.8292548xLabrecque, R., Vigneault, C., Blondin, P., & Sirard, M.-A. (2014). Gene expression analysis of bovine oocytes at optimal coasting time combined with GnRH antagonist during the no-FSH period. Theriogenology, 81(8), 1092-1100. doi:10.1016/j.theriogenology.2014.01.037Leali, D., Inforzato, A., Ronca, R., Bianchi, R., Belleri, M., Coltrini, D., … Presta, M. (2012). Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(3), 696-703. doi:10.1161/atvbaha.111.243998Llobat, L., Marco-Jiménez, F., Peñaranda, D., Saenz-de-Juano, M., & Vicente, J. (2011). Effect of Embryonic Genotype on Reference Gene Selection for RT-qPCR Normalization. Reproduction in Domestic Animals, 47(4), 629-634. doi:10.1111/j.1439-0531.2011.01934.xMartin, B., Golden, E., Carlson, O. D., Egan, J. M., Mattson, M. P., & Maudsley, S. (2008). Caloric restriction: Impact upon pituitary function and reproduction. Ageing Research Reviews, 7(3), 209-224. doi:10.1016/j.arr.2008.01.002Martínez-Paredes, E., Ródenas, L., Pascual, J. J., Blas, E., Brecchia, G., Boiti, C., & Cervera, C. (2015). Effects of rearing feeding programme on the young rabbit females’ behaviour and welfare indicators. World Rabbit Science, 23(3), 197. doi:10.4995/wrs.2015.3987McEvoy, T. G., Robinson, J. J., Aitken, R. P., Findlay, P. A., Palmer, R. M., & Robertson, I. S. (1995). Dietary-induced suppression of pre-ovulatory progesterone concentrations in superovulated ewes impairs the subsequent in vivo and in vitro development of their ova. Animal Reproduction Science, 39(2), 89-107. doi:10.1016/0378-4320(95)01392-dMoussa, M., Shu, J., Zhang, X. H., & Zeng, F. (2015). Maternal control of oocyte quality in cattle «a review». Animal Reproduction Science, 155, 11-27. doi:10.1016/j.anireprosci.2015.01.011Naturil-Alfonso, C., Lavara, R., Millán, P., Rebollar, P. G., Vicente, J. S., & Marco-Jiménez, F. (2016). Study of failures in a rabbit line selected for growth rate. World Rabbit Science, 24(1), 47. doi:10.4995/wrs.2016.4016Naturil-Alfonso, C., Lavara, R., Vicente, J., & Marco-Jiménez, F. (2015). Effects of Female Dietary Restriction in a Rabbit Growth Line During Rearing on Reproductive Performance and Embryo Quality. Reproduction in Domestic Animals, 51(1), 114-122. doi:10.1111/rda.12653Naturil-Alfonso, C., Marco-Jiménez, F., Jiménez-Trigos, E., Saenz-de-Juano, M., Viudes-de-Castro, M., Lavara, R., & Vicente, J. (2015). Role of Embryonic and Maternal Genotype on Prenatal Survival and Foetal Growth in Rabbit. Reproduction in Domestic Animals, 50(2), 312-320. doi:10.1111/rda.12493O’Callaghan, D., Yaakub, H., Hyttel, P., Spicer, L., & Boland, M. (2000). Effect of nutrition and superovulation on oocyte morphology, follicular fluid composition and systemic hormone concentrations in ewes. Reproduction, 118(2), 303-313. doi:10.1530/jrf.0.1180303Papadopoulos, S., Lonergan, P., Gath, V., Quinn, K. M., Evans, A. C. O., O’Callaghan, D., & Boland, M. P. (2001). Effect of diet quantity and urea supplementation on oocyte and embryo quality in sheep. Theriogenology, 55(5), 1059-1069. doi:10.1016/s0093-691x(01)00466-6Pascual, J. J., Castella, F., Cervera, C., Blas, E., & Fernández-Carmona, J. (2000). The use of ultrasound measurement of perirenal fat thickness to estimate changes in body condition of young female rabbits. Animal Science, 70(3), 435-442. doi:10.1017/s135772980005178xRomanatto, T., Cesquini, M., Amaral, M. E., Roman, É. A., Moraes, J. C., Torsoni, M. A., … Velloso, L. A. (2007). TNF-α acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient—Effects on leptin and insulin signaling pathways. Peptides, 28(5), 1050-1058. doi:10.1016/j.peptides.2007.03.006Rommers, J. M., Meijerhof, R., Noordhuizen, J. P. T. M., & Kemp, B. (2004). Effect of feeding program during rearing and age
at first insemination on performances during subsequent reproduction in young rabbit does. Reproduction Nutrition Development, 44(4), 321-332. doi:10.1051/rnd:2004037Smith, J. T., Acohido, B. V., Clifton, D. K., & Steiner, R. A. (2006). KiSS-1 Neurones Are Direct Targets for Leptin in the ob/ob Mouse. Journal of Neuroendocrinology, 18(4), 298-303. doi:10.1111/j.1365-2826.2006.01417.xSzendrő, Z., Szendrő, K., & Zotte, A. D. (2012). Management of Reproduction on Small, Medium and Large Rabbit Farms: A Review. Asian-Australasian Journal of Animal Sciences, 25(5), 738-748. doi:10.5713/ajas.2012.12015Vicente, J. S., Llobat, L., Viudes-de-Castro, M. P., Lavara, R., Baselga, M., & Marco-Jiménez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77(1), 81-88. doi:10.1016/j.theriogenology.2011.07.019Vicente, J. S., María Pilar Viudes-De-Castro, María de la Luz García, & Baselga, M. (2003). Effect of rabbit line on a program of cryopreserved embryos by vitrification. Reproduction Nutrition Development, 43(2), 137-143. doi:10.1051/rnd:2003011Viudes-de-Castro, M. P., & Vicente, J. S. (1997). Effect of sperm count on the fertility and prolificity rates of meat rabbits. Animal Reproduction Science, 46(3-4), 313-319. doi:10.1016/s0378-4320(96)01628-4Wulf, P., & Suter, U. (1999). Embryonic expression of epithelial membrane protein 1 in early neurons. Developmental Brain Research, 116(2), 169-180. doi:10.1016/s0165-3806(99)00092-9Xiccato, G., & Trocino, A. (s. f.). Energy and protein metabolism and requirements. Nutrition of the rabbit, 83-118. doi:10.1079/9781845936693.0083Yan, J., Zhou, B., Yang, J., Tai, P., Chen, X., Zhang, H., … Xia, G. (2008). Glucose can reverse the effects of acute fasting on mouse ovulation and oocyte maturation. Reproduction, Fertility and Development, 20(6), 703. doi:10.1071/rd08034Yu, J., Deng, M., Medvedev, S., Yang, J., Hecht, N. B., & Schultz, R. M. (2004). Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. Developmental Biology, 268(1), 195-206. doi:10.1016/j.ydbio.2003.12.020Yu, J., Hecht, N. B., & Schultz, R. M. (2001). Expression of MSY2 in Mouse Oocytes and Preimplantation Embryos1. Biology of Reproduction, 65(4), 1260-1270. doi:10.1095/biolreprod65.4.126
Abelian duality on globally hyperbolic spacetimes
We study generalized electric/magnetic duality in Abelian gauge theory by combining techniques from locally covariant quantum field theory and Cheeger-Simons differential cohomology on the category of globally hyperbolic Lorentzian manifolds. Our approach generalizes previous treatments using the Hamiltonian formalism in a manifestly covariant way and without the assumption of compact Cauchy surfaces. We construct semi-classical configuration spaces and corresponding presymplectic Abelian groups of observables, which are quantized by the CCR-functor to the category of C*-algebras. We demonstrate explicitly how duality is implemented as a natural isomorphism between quantum field theories. We apply this formalism to develop a fully covariant quantum theory of self-dual fields
Lack of Methyl-CpG Binding Protein 2 (MeCP2) Affects Cell Fate Refinement During Embryonic Cortical Development
During differentiation, neurons progressively restrict their fate repressing the expression of specific genes. Here we describe the involvement in such developmental steps of the methyl-CpG binding protein 2 (MeCP2), an epigenetic factor that participates to chromatin folding and transcriptional regulation. We previously reported that, due to transcriptional impairments, the maturation of Mecp2 null neurons is delayed. To evaluate whether this could stem from altered progenitors proliferation and differentiation, we investigated whether lack of Mecp2 affects these features both in vitro and in vivo. We show that in Mecp2 null embryonic cortexes the expression of genes defining the identity of proliferating neuroprogenitors is enriched and that their permanence in the G1 phase is prolonged. Moreover, the number of cells transitioning from a stage of maturation to a more mature one is increased in Mecp2 null embryonic cortices, in line with the central role of G1 for cell identity refinement. We thus suggest that, possibly due to the lack of proper transcriptional control normally exerted by Mecp2, fate refinement is impaired in developing null cells. We propose that the maturation delay affecting the developing Mecp2 null cortex originates, at least in part, from deranged mechanisms of cell fate refinement
Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer
[EN] The advent of assisted reproductive technologies (ART) in mammals involved an extraordinary change in the environment where the beginning of a new organism takes place. Under in vitro conditions, in which ART is currently being performed, it likely fails to mimic optimal in vivo conditions. This suboptimal environment could mediate in the natural developmental trajectory of the embryo, inducing lasting effects until later life stages that may be inherited by subsequent generations (transgenerational effects). Therefore, we evaluated the potential transgenerational effects of embryo exposure to the cryopreservation-transfer procedure in a rabbit model on the offspring phenotype, molecular physiology of the liver (transcriptome and metabolome) and reproductive performance during three generations (F1, F2 and F3). The results showed that, compared to naturally-conceived animals (NC group), progeny generated after embryo exposure to the cryopreservation-transfer procedure (VT group) exhibited lower body growth, which incurred lower adult body weight in the F1 (direct effects), F2 (intergenerational effects) and F3 (transgenerational effects) generations. Furthermore, VT animals showed intergenerational effects on heart weight and transgenerational effects on liver weight. The RNA-seq data of liver tissue revealed 642 differentially expressed transcripts (DETs) in VT animals from the F1 generation. Of those, 133 were inherited from the F2 and 120 from the F3 generation. Accordingly, 151, 190 and 159 differentially accumulated metabolites (DAMs) were detected from the F1, F2 and F3, respectively. Moreover, targeted metabolomics analysis demonstrated that transgenerational effects were mostly presented in the non-polar fraction. Functional analysis of molecular data suggests weakened zinc and fatty acid metabolism across the generations, associated with alterations in a complex molecular network affecting global hepatic metabolism that could be associated with the phenotype of VT animals. However, these VT animals showed proper reproductive performance, which verified a functional health status. In conclusion, our results establish the long-term transgenerational effects following a vitrified embryo transfer procedure. We showed that the VT phenotype could be the result of the manifestation of embryonic developmental plasticity in response to the stressful conditions during ART procedures.Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2014-53405-C2-1-P) and Generalitat Valenciana (Research project: Prometeo II 2014/036) is acknowledged. X.G.D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429). English text version was revised by N. Macowan English Language Service.Garcia-Dominguez, X.; Marco-Jiménez, F.; Peñaranda, D.; Diretto, G.; García-Carpintero, V.; Cañizares Sales, J.; Vicente Antón, JS. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports. 10(1):1-15. https://doi.org/10.1038/s41598-020-68195-9S115101Canovas, S., Ross, P. J., Kelsey, G. & Coy, P. DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). BioEssays 39, 1 (2017).García-Martínez, S. et al. Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. Mol. Hum. Reprod. 24, 260–270 (2018).Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N. & Cheong, Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum. Reprod. Update 24, 15–34 (2018).Roseboom, T. J. Developmental plasticity and its relevance to assisted human reproduction. Hum. Reprod. 33, 546–552 (2018).Feuer, S. & Rinaudo, P. From embryos to adults: a DOHaD perspective on in vitro fertilization and other assisted reproductive technologies. Healthcare 4, E51 (2016).Zandstra, H. et al. Association of culture medium with growth, weight and cardiovascular development of IVF children at the age of 9 years. Hum. Reprod. 33, 1645–1656 (2018).Chen, M. & Heilbronn, L. K. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J. Dev. Orig. Health Dis. 8, 388–402 (2017).Chen, L. et al. Birth prevalence of congenital malformations in singleton pregnancies resulting from in vitro fertilization/intracytoplasmic sperm injection worldwide: a systematic review and meta-analysis. Arch. Gynecol. Obstet. 297, 1115–1130 (2018).Zhang, W. Y. et al. Vascular health of children conceived via in vitro fertilization. J. Pediatr. 214, 47–53 (2019).Guo, X. Y. et al. Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertil. Steril. 107, 622–631 (2017).Vrooman, L. A. & Bartolomei, M. S. Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reprod. Toxicol. 68, 72–84 (2017).Duranthon, V. & Chavatte-Palmer, P. Long term effects of ART: What do animals tell us?. Mol. Reprod. Dev. 85, 348–368 (2018).Ramos-Ibeas, P. et al. Embryo responses to stress induced by assisted reproductive technologies. Mol. Reprod. Dev. 86, 1292–1306 (2019).Feuer, S. K. et al. Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction 153, 107–122 (2017).Feuer, S. K. & Rinaudo, P. F. Physiological, metabolic and transcriptional postnatal phenotypes of in vitro fertilization (IVF) in the mouse. J. Dev. Orig. Health Dis. 8, 403–410 (2017).Sparks, A. E. T. Human embryo cryopreservation-methods, timing, and other considerations for optimizing an embryo cryopreservation program. Semin. Reprod. Med. 33, 128–144 (2015).Dulioust, E. et al. Long-term effects of embryo freezing in mice. Proc. Natl. Acad. Sci. USA. 92, 589–593 (1995).Auroux, M., Cerutti, I., Ducot, B. & Loeuillet, A. Is embryo-cryopreservation really neutral? A new long-term effect of embryo freezing in mice: protection of adults from induced cancer according to strain and sex. Reprod. Toxicol. 18, 813–818 (2004).Vicente, J. S. et al. Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology 67, 321–326 (2013).Saenz-De-Juano, M. D. et al. Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. Reproduction https://doi.org/10.1530/REP-14-0019 (2014).Saenz-de-Juano, M. D., Vicente, J. S., Hollung, K. & Marco-Jiménez, F. Effect of embryo vitrification on rabbit foetal placenta proteome during pregnancy. PLoS ONE 147, 789–801 (2015).Berntsen, S. & Pinborg, A. Large for gestational age and macrosomia in singletons born after frozen/thawed embryo transfer (FET) in assisted reproductive technology (ART). Birth Defects Res. 110, 630–643 (2018).Maheshwari, A. et al. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer?. Hum. Reprod. Update 24, 35–58 (2018).Garcia-Dominguez, X., Vicente, J. S. & Marco-Jiménez, F. Developmental plasticity in response to embryo cryopreservation: the importance of the vitrification device in rabbits. Animals 10, 804 (2020).Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P. & Vicente, J. S. Minimally invasive embryo transfer and embryo vitrification at the optimal embryo stage in rabbit model. J. Vis. Exp. 147, e58055 (2019).Garcia-Dominguez, X. et al. Long-term phenotypic effects following vitrified-thawed embryo transfer in a rabbit model. bioRxiv https://doi.org/10.1101/410514 (2018).Ventura-Juncá, P. et al. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations: scientific and bioethical implications for IVF in humans. Biol. Res. 48, 68 (2015).Calle, A. et al. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 77, 785–793 (2012).Calle, A. et al. Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male Offspring1. Biol. Reprod. 87, 1–9 (2012).Mahsoudi, B., Li, A. & O’Neill, C. Assessment of the long-term and transgenerational consequences of perturbing preimplantation embryo development in Mice1. Biol. Reprod. 77, 889–896 (2007).Servick, K. Unsettled questions trail IVF’s success. Science (80-) 345, 744–746 (2014).Cifre, J., Baselga, M., Gómez, E. A. & De La Luz, G. M. Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Anim. Res. 48, 15–24 (1999).Lavara, R., Baselga, M., Marco-Jiménez, F. & Vicente, J. S. Embryo vitrification in rabbits: consequences for progeny growth. Theriogenology 84, 674–680 (2015).Nusbaumer, D., Da Cunha, L. M. & Wedekind, C. Sperm cryopreservation reduces offspring growth. Proc. R. Soc. B Biol. Sci. 286, 20191644 (2019).Feuer, S. K. et al. Sexually dimorphic effect of In Vitro Fertilization (IVF) on adult mouse fat and liver metabolomes. Endocrinology 155, 4554–4567 (2014).Feuer, S. K. et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155, 1956–1969 (2014).Velazquez, M. A. et al. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 590–600 (2018).Fernández-Gonzalez, R. et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. U. S. A. 101, 5880–5885 (2004).Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973 (2018).Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21, 143–151 (2019).Lavara, R., Baselga, M., Marco-Jiménez, F. & Vicente, J. S. Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology 81, 988–992 (2014).Rexhaj, E. et al. Mice generated by in vitro fertilization exhibit vascular dysfunction and shortened life span. J. Clin. Invest. 123, 5052–5060 (2013).Møller, S. & Bernardi, M. Interactions of the heart and the liver. Eur. Heart J. 34, 2804–2811 (2013).Hyatt, M. A., Budge, H. & Symonds, M. E. Early developmental influences on hepatic organogenesis. Organogenesis 4, 170–175 (2008).Skinner, M. K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 25, 2–6 (2008).Hajkova, P. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos. Trans. R. Soc. B Biol. Sci. 366, 2266–2273 (2011).Lacal, I. & Ventura, R. Epigenetic inheritance: concepts, mechanisms and perspectives. Front. Mol. Neurosci. 11, 292 (2018).Fraser, R. & Lin, C. J. Epigenetic reprogramming of the zygote in mice and men: on your marks, get set, go!. Reproduction 152, R211–R222 (2016).Adamek, A. & Kasprzak, A. Insulin-like growth factor (IGF) system in liver diseases. Int. J. Mol. Sci. 19, E1308 (2018).Kineman, R. D., del Rio-Moreno, M. & Sarmento-Cabral, A. 40 years of IGF1: understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. J. Mol. Endocrinol. 61, T187–T198 (2018).Davis, S. R. & Cousins, R. J. Metallothionein expression in animals: a physiological perspective on function. J. Nutr. 130, 1085–1088 (2000).Günes, Ć et al. Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J. 17, 2846–2854 (1998).Kambe, T., Tsuji, T., Hashimoto, A. & Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 95, 749–784 (2015).Xia, X. et al. Serum levels of trace elements in children born after assisted reproductive technology. Clin. Chim. Acta 495, 664–669 (2019).Bird, A. J. Cellular sensing and transport of metal ions: Implications in micronutrient homeostasis. J. Nutr. Biochem. 26, 1103–1115 (2015).Meesapyodsuk, D. & Qiu, X. The front-end desaturase: Structure, function, evolution and biotechnological use. Lipids 47, 227–237 (2012).Chimhashu, T. et al. Sensitivity of fatty acid desaturation and elongation to plasma zinc concentration: a randomised controlled trial in Beninese children. Br. J. Nutr. https://doi.org/10.1017/S000711451700366X (2018).Wang, L. Y. et al. Alteration of fatty acid metabolism in the liver, adipose tissue, and testis of male mice conceived through assisted reproductive technologies: fatty acid metabolism in ART mice. Lipids Health Dis. 12, 5 (2013).Li, J., Yin, H., Bibus, D. M. & Byelashov, O. A. The role of Omega-3 docosapentaenoic acid in pregnancy and early development. Eur. J. Lipid Sci. Technol. 118, 1692–1701 (2016).Hadley, K. B., Ryan, A. S., Forsyth, S., Gautier, S. & Salem, N. The essentiality of arachidonic acid in infant development. Nutrients 8, 216 (2016).Makowski, L. & Hotamisligil, G. S. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr. Opin. Lipidol. 16, 543–548 (2005).Waynforth, D. Effects of conception using assisted reproductive technologies on infant health and development: An evolutionary perspective and analysis using UK millennium cohort data. Yale J. Biol. Med. 91, 225–235 (2018).Sullivan, E. M. et al. Mechanisms bywhich dietary fatty acids regulate mitochondrial structure-function in health and disease. Adv. Nutr. 9, 247–262 (2018).Richardson, U. I. & Wurtman, R. J. Polyunsaturated fatty acids stimulate phosphatidylcholine synthesis in PC12 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1771, 558–563 (2007).Singh, A. et al. Human glutathione S-transferase enzyme gene polymorphisms and their association with neurocysticercosis. Mol. Neurobiol. 54, 2843–2851 (2017).Yu, H. F. et al. Malic enzyme 1 is important for uterine decidualization in response to progesterone/cAMP/PKA/HB-EGF pathway. FASEB J. 34, 3820–3837 (2020).Chen, M. et al. Altered glucose metabolism in mouse and humans conceived by IVF. Diabetes 63, 3189–3198 (2014).Auroux, M. Long-term effects in progeny of paternal environment and of gamete/embryo cryopreservation. Hum. Reprod. Update 6, 550–563 (2000).Belva, F. et al. Semen quality of young adult ICSI offspring: The first results. Hum. Reprod. 31, 2811–2820 (2016).Marco-Jiménez, F. & Vicente, J. S. Overweight in young males reduce fertility in rabbit model. PLoS ONE 12, e0180679 (2017).Laubach, Z. M. et al. Epigenetics and the maintenance of developmental plasticity: extending the signalling theory framework. Biol. Rev. 93, 1323–1338 (2018).Estany, J., Camacho, J., Baselga, M. & Blasco, A. Selection response of growth rate in rabbits for meat production. Genet. Sel. Evol. 24, 527–537 (1992).Vicente, J. S., Viudes-de-Castro, M. P., de la García, M. L. & Baselga, M. Effect of rabbit line on a program of cryopreserved embryos by vitrification. Reprod. Nutr. Dev. 43, 137–143 (2003).Zucker, I. & Beery, A. K. Males still dominate animal studies. Nature 465, 690 (2010).Vicente, J. S., Viudes-De-Castro, M. P. & García, M. L. In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reprod. Nutr. Dev. 39, 657–662 (1999).Besenfelder, U. & Brem, G. Laparoscopic embryo transfer in rabbits. J. Reprod. Fertil. 99, 53–56 (1993).Blasco, A. The use of Bayesian statistics in meat quality analyses: a review. Meat Sci. 69, 115–122 (2005).Andrews, S. FASTQC a quality control tool for high throughput sequence data. Babraham Institute (2015). Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).Wang, Y. E., Kutnetsov, L., Partensky, A., Farid, J. & Quackenbush, J. WebMeV: a cloud platform for analyzing and visualizing cancer genomic data. Cancer Res. 77, e11–e14 (2017).Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 44, 566–570 (2015).Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, 169 (2015).Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).Diretto, G. et al. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules 22, E1359 (2017).Cappelli, G. et al. A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. J. Funct. Foods 45, 499–511 (2018).Di Meo, F. et al. Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. J. Funct. Foods 61, 103515 (2019).Fiore, A. et al. A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biol. 12, 50 (2012).Rambla, J. L. et al. Gene-metabolite networks of volatile metabolism in Airen and Tempranillo grape cultivars revealed a distinct mechanism of aroma bouquet production. Front. Plant Sci. 7, 1619 (2016).Sulli, M. et al. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS ONE 12, e0184143 (2017)
Early Embryo Exposure to Assisted Reproductive Manipulation Induced Subtle Changes in Liver Epigenetics with No Apparent Negative Health Consequences in Rabbit
[EN] Embryo manipulation is a requisite step in assisted reproductive technology (ART). Therefore, it is of great necessity to appraise the safety of ART and investigate the long-term effect, including lipid metabolism, on ART-conceived offspring. Augmenting our ART rabbit model to investigate lipid metabolic outcomes in offspring longitudinally, we detected variations in hepatic DNA methylation ART offspring in the F3 generation for embryonic exposure (multiple ovulation, vitrification and embryo transfer). Through adult liver metabolomics and proteomics, we identified changes mainly related to lipid metabolism (e.g., polyunsaturated fatty acids, steroids, steroid hormone). We also found that DNA methylation analysis was linked to changes in lipid metabolism and apoptosis genes. Nevertheless, these differences did not apparently alter the general health status. Thus, our findings suggest that ART is likely to be a player in embryo epigenetic events related to hepatic homeostasis alteration in adulthood.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), Spain, grant number AGL2014-53405-C2-1-P and by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number Prometeo II 2014/036. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness of Spain (BES-2015-072429).García-Domínguez, X.; Diretto, G.; Peñaranda, D.; Frusciante, S.; García-Carpintero, V.; Cañizares Sales, J.; Vicente Antón, JS.... (2021). Early Embryo Exposure to Assisted Reproductive Manipulation Induced Subtle Changes in Liver Epigenetics with No Apparent Negative Health Consequences in Rabbit. International Journal of Molecular Sciences. 22(18):1-17. https://doi.org/10.3390/ijms22189716S117221
Effect of embryo vitrification on the steroid biosynthesis of liver tissue in rabbit offspring
[EN] Preimplantation embryo manipulations during standard assisted reproductive technologies (ART) have significant repercussions on offspring. However, few studies to date have investigated the potential long-term outcomes associated with the vitrification procedure. Here, we performed an experiment to unravel the particular effects related to stress induced by embryo transfer and vitrification techniques on offspring phenotype from the foetal period through to prepuberal age, using a rabbit model. In addition, the focus was extended to the liver function at prepuberal age. We showed that, compared to naturally conceived animals (NC), offspring derived after embryo exposure to the transfer procedure (FT) or cryopreservation-transfer procedure (VT) exhibited variation in growth and body weight from foetal life to prepuberal age. Strikingly, we found a nonlinear relationship between FT and VT stressors, most of which were already present in the FT animals. Furthermore, we displayed evidence of variation in liver function at prepuberal age, most of which occurred in both FT and VT animals. The present major novel finding includes a significant alteration of the steroid biosynthesis profile. In summary, here we provide that embryonic manipulation during the vitrification process is linked with embryo phenotypic adaptation detected from foetal life to prepuberal age and suggests that this phenotypic variation may be associated, to a great extent, with the effect of embryo transfer.This research was funded by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number AICO/2019/272. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness of Spain (BES-2015-072429).Marco-Jiménez, F.; Garcia-Dominguez, X.; Domínguez-Martínez, M.; Viudes-De-Castro, MP.; Diretto, G.; Peñaranda, D.; Vicente Antón, JS. (2020). Effect of embryo vitrification on the steroid biosynthesis of liver tissue in rabbit offspring. International Journal of Molecular Sciences. 21(22):1-17. https://doi.org/10.3390/ijms21228642S1172122Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xDulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010Vicente, J. S., Saenz-de-Juano, M. D., Jiménez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., & Marco-Jiménez, F. (2013). Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology, 67(3), 321-326. doi:10.1016/j.cryobiol.2013.09.165Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Saenz-de-Juano, M. D., Vicente, J. S., Hollung, K., & Marco-Jiménez, F. (2015). Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy. PLOS ONE, 10(4), e0125157. doi:10.1371/journal.pone.0125157Berntsen, S., & Pinborg, A. (2018). Large for gestational age and macrosomia in singletons born after frozen/thawed embryo transfer (FET) in assisted reproductive technology (ART). Birth Defects Research, 110(8), 630-643. doi:10.1002/bdr2.1219Maheshwari, A., Pandey, S., Amalraj Raja, E., Shetty, A., Hamilton, M., & Bhattacharya, S. (2017). Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Human Reproduction Update, 24(1), 35-58. doi:10.1093/humupd/dmx031Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Kohda, T. (2013). Effects of embryonic manipulation and epigenetics. Journal of Human Genetics, 58(7), 416-420. doi:10.1038/jhg.2013.61Canovas, S., Ross, P. J., Kelsey, G., & Coy, P. (2017). DNA Methylation in Embryo Development: Epigenetic Impact of ART (Assisted Reproductive Technologies). BioEssays, 39(11), 1700106. doi:10.1002/bies.201700106Canovas, S., Ivanova, E., Romar, R., García-Martínez, S., Soriano-Úbeda, C., García-Vázquez, F. A., … Coy, P. (2017). DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife, 6. doi:10.7554/elife.23670Ivanova, E., Canovas, S., Garcia-Martínez, S., Romar, R., Lopes, J. S., Rizos, D., … Coy, P. (2020). DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clinical Epigenetics, 12(1). doi:10.1186/s13148-020-00857-xGarcía-Martínez, S., Sánchez Hurtado, M. A., Gutiérrez, H., Sánchez Margallo, F. M., Romar, R., Latorre, R., … López Albors, O. (2018). Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. MHR: Basic science of reproductive medicine, 24(5), 260-270. doi:10.1093/molehr/gay008Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028Marchesi, D., Qiao, J., & Feng, H. (2012). Embryo Manipulation and Imprinting. Seminars in Reproductive Medicine, 30(04), 323-334. doi:10.1055/s-0032-1320013Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228Duranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Leibo, S. P., & Sztein, J. M. (2019). Cryopreservation of mammalian embryos: Derivation of a method. Cryobiology, 86, 1-9. doi:10.1016/j.cryobiol.2019.01.007Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038Saenz-de-Juano, M., Marco-Jimenez, F., Viudes-de-Castro, M., Lavara, R., & Vicente, J. (2014). Direct Comparison of the Effects of Slow Freezing and Vitrification on Late Blastocyst Gene Expression, Development, Implantation and Offspring of Rabbit Morulae. Reproduction in Domestic Animals, 49(3), 505-511. doi:10.1111/rda.12320Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., & Vicente, J. S. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals, 10(6), 1043. doi:10.3390/ani10061043Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2014). Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology, 81(7), 988-992. doi:10.1016/j.theriogenology.2014.01.030Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-9Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Zandstra, H., Brentjens, L. B. P. M., Spauwen, B., Touwslager, R. N. H., Bons, J. A. P., Mulder, A. L., … Van Montfoort, A. P. A. (2018). Association of culture medium with growth, weight and cardiovascular development of IVF children at the age of 9 years. Human Reproduction, 33(9), 1645-1656. doi:10.1093/humrep/dey246Chen, L., Yang, T., Zheng, Z., Yu, H., Wang, H., & Qin, J. (2018). Birth prevalence of congenital malformations in singleton pregnancies resulting from in vitro fertilization/intracytoplasmic sperm injection worldwide: a systematic review and meta-analysis. Archives of Gynecology and Obstetrics, 297(5), 1115-1130. doi:10.1007/s00404-018-4712-xZhang, W. Y., Selamet Tierney, E. S., Chen, A. C., Ling, A. Y., Fleischmann, R. R., & Baker, V. L. (2019). Vascular Health of Children Conceived via In Vitro Fertilization. The Journal of Pediatrics, 214, 47-53. doi:10.1016/j.jpeds.2019.07.033Guo, X.-Y., Liu, X.-M., Jin, L., Wang, T.-T., Ullah, K., Sheng, J.-Z., & Huang, H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5. doi:10.1016/j.fertnstert.2016.12.007Feuer, S. K., Liu, X., Donjacour, A., Simbulan, R., Maltepe, E., & Rinaudo, P. (2017). Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction, 153(1), 107-122. doi:10.1530/rep-16-0473Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xEcker, D. J., Stein, P., Xu, Z., Williams, C. J., Kopf, G. S., Bilker, W. B., … Schultz, R. M. (2004). Long-term effects of culture of preimplantation mouse embryos on behavior. Proceedings of the National Academy of Sciences, 101(6), 1595-1600. doi:10.1073/pnas.0306846101Fauque, P., Mondon, F., Letourneur, F., Ripoche, M.-A., Journot, L., Barbaux, S., … Vaiman, D. (2010). In Vitro Fertilization and Embryo Culture Strongly Impact the Placental Transcriptome in the Mouse Model. PLoS ONE, 5(2), e9218. doi:10.1371/journal.pone.0009218Fernandez-Gonzalez, R., Ramirez, M. A., Pericuesta, E., Calle, A., & Gutierrez-Adan, A. (2010). Histone Modifications at the Blastocyst Axin1Fu Locus Mark the Heritability of In Vitro Culture-Induced Epigenetic Alterations in Mice1. Biology of Reproduction, 83(5), 720-727. doi:10.1095/biolreprod.110.084715Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M. A., … Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proceedings of the National Academy of Sciences, 101(16), 5880-5885. doi:10.1073/pnas.0308560101Winick, M., & Noble, A. (1965). Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat. Developmental Biology, 12(3), 451-466. doi:10.1016/0012-1606(65)90009-6Saenz-de-Juano, M. D., Marco-Jiménez, F., & Vicente, J. S. (2016). Embryo transfer manipulation cause gene expression variation in blastocysts that disrupt implantation and offspring rates at birth in rabbit. European Journal of Obstetrics & Gynecology and Reproductive Biology, 207, 50-55. doi:10.1016/j.ejogrb.2016.10.049Delle Piane, L., Lin, W., Liu, X., Donjacour, A., Minasi, P., Revelli, A., … Rinaudo, P. F. (2010). Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Human Reproduction, 25(8), 2039-2046. doi:10.1093/humrep/deq165Wale, P. L., & Gardner, D. K. (2015). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Human Reproduction Update, 22(1), 2-22. doi:10.1093/humupd/dmv034Charni-Natan, M., Aloni-Grinstein, R., Osher, E., & Rotter, V. (2019). Liver and Steroid Hormones—Can a Touch of p53 Make a Difference? Frontiers in Endocrinology, 10. doi:10.3389/fendo.2019.00374Yakar, S., Liu, J.-L., Stannard, B., Butler, A., Accili, D., Sauer, B., & LeRoith, D. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences, 96(13), 7324-7329. doi:10.1073/pnas.96.13.7324Juul, A. (2003). Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Hormone & IGF Research, 13(4), 113-170. doi:10.1016/s1096-6374(03)00038-8Miles, H. L., Hofman, P. L., Peek, J., Harris, M., Wilson, D., Robinson, E. M., … Cutfield, W. S. (2007). In Vitro Fertilization Improves Childhood Growth and Metabolism. The Journal of Clinical Endocrinology & Metabolism, 92(9), 3441-3445. doi:10.1210/jc.2006-2465Belva, F., Bonduelle, M., Provyn, S., Painter, R. C., Tournaye, H., Roelants, M., & De Schepper, J. (2018). Metabolic Syndrome and Its Components in Young Adults Conceived by ICSI. International Journal of Endocrinology, 2018, 1-8. doi:10.1155/2018/8170518Fournier, N., Atger, V., Paul, J.-L., Sturm, M., Duverger, N., Rothblat, G. H., & Moatti, N. (2000). Human ApoA-IV Overexpression in Transgenic Mice Induces cAMP-Stimulated Cholesterol Efflux From J774 Macrophages to Whole Serum. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(5), 1283-1292. doi:10.1161/01.atv.20.5.1283Liang, Y., Jiang, X.-C., Liu, R., Liang, G., Beyer, T. P., Gao, H., … Cao, G. (2004). Liver X Receptors (LXRs) Regulate Apolipoprotein AIV-Implications of the Antiatherosclerotic Effect of LXR Agonists. Molecular Endocrinology, 18(8), 2000-2010. doi:10.1210/me.2003-0477Lin, Q., Cao, Y., & Gao, J. (2015). Decreased expression of the APOA1–APOC3–APOA4 gene cluster is associated with risk of Alzheimer’s disease. Drug Design, Development and Therapy, 5421. doi:10.2147/dddt.s89279Qin, W., Li, X., Xie, L., Li, S., Liu, J., Jia, L., … Chen, Z. (2016). A long non-coding RNA,APOA4-AS, regulatesAPOA4expression depending on HuR in mice. Nucleic Acids Research, 44(13), 6423-6433. doi:10.1093/nar/gkw341Leese, H. J., Guerif, F., Allgar, V., Brison, D. R., Lundin, K., & Sturmey, R. G. (2016). Biological optimization, the Goldilocks principle, and how much islagomin the preimplantation embryo. Molecular Reproduction and Development, 83(9), 748-754. doi:10.1002/mrd.22684Kohda, T., & Ishino, F. (2013). Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1609), 20120353. doi:10.1098/rstb.2012.0353Garcia-Dominguez, X., Juarez, J. D., Vicente, J. S., & Marco-Jiménez, F. (2020). Impact of embryo technologies on secondary sex ratio in rabbit. Cryobiology, 97, 60-65. doi:10.1016/j.cryobiol.2020.10.008Viudes-de-Castro, M. P., Marco-Jiménez, F., Cedano-Castro, J. I., & Vicente, J. S. (2017). Effect of corifollitropin alfa supplemented with or without LH on ovarian stimulation and embryo viability in rabbit. Theriogenology, 98, 68-74. doi:10.1016/j.theriogenology.2017.05.005Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.
Chaotic, memory and cooling rate effects in spin glasses: Is the Edwards-Anderson model a good spin glass?
We investigate chaotic, memory and cooling rate effects in the three
dimensional Edwards-Anderson model by doing thermoremanent (TRM) and AC
susceptibility numerical experiments and making a detailed comparison with
laboratory experiments on spin glasses. In contrast to the experiments, the
Edwards-Anderson model does not show any trace of re-initialization processes
in temperature change experiments (TRM or AC). A detailed comparison with AC
relaxation experiments in the presence of DC magnetic field or coupling
distribution perturbations reveals that the absence of chaotic effects in the
Edwards-Anderson model is a consequence of the presence of strong cooling rate
effects. We discuss possible solutions to this discrepancy, in particular the
smallness of the time scales reached in numerical experiments, but we also
question the validity of the Edwards-Anderson model to reproduce the
experimental results.Comment: 17 pages, 10 figures. The original version of the paper has been
split in two parts. The second part is now available as cond-mat/010224
Comparison of two techniques for the morphometry study on gilthead seabream (Sparus aurata) spermatozoa and evaluation of changes induced by cryopreservation
[EN] The development of powerful software has made possible spermatozoa morphology studies. However, some problems have emerged in relation to protocol standardization to compare results from different laboratories. This study was carried out to compare two techniques commonly used (staining vs phase contrast technique) for the morphometry study of gilthead sea bream spermatozoa using an integrated sperm analysis system (ISAS). Spermatozoa morphometry values were significantly affected by the technique used, and phase contrast technique was found to be the more accurate method, showing lower coefficients of variation on spermatozoa morphometry parameters measurements. Moreover, it has been shown that cryopreservation process produces damage in gilthead sea bream spermatozoa, causing negative effects in sperm parameters as spermatozoa morphometry (a decrease in cell volume), motility (from 95 to 68% motile cells) and viability (from 95 to 87% of live cells), being the addition of freezing medium containing cryoprotectant (DMSO) an important factor that caused the morphometry changes. (C) 2012 Elsevier Inc. All rights reserved.This work was financed by the Spanish Ministry of Science and Innovation (MICINN; AGL2007-64040-C03-00, Project SELECTBREAM). V. Gallego and I. Mazzeo were supported by predoctoral scholarships financed by the Spanish MICINN and Generalitat Valenciana, respectively. D.S. Penaranda had a postdoctoral grant from UPV.Gallego Albiach, V.; Peñaranda, D.; Marco Jiménez, F.; Mazzeo, I.; Pérez Igualada, LM.; Asturiano Nemesio, JF. (2012). Comparison of two techniques for the morphometry study on gilthead seabream (Sparus aurata) spermatozoa and evaluation of changes induced by cryopreservation. Theriogenology. 77(6):1078-1087. https://doi.org/10.1016/j.theriogenology.2011.10.010S1078108777
Disorder Induced Phase Transition in a Random Quantum Antiferromagnet
A two-dimensional Heisenberg model with random antiferromagnetic
nearest-neighbor exchange is studied using quantum Monte Carlo techniques. As
the strength of the randomness is increased, the system undergoes a transition
from an antiferromagnetically ordered ground state to a gapless disordered
state. The finite-size scaling of the staggered structure factor and
susceptibility is consistent with a dynamic exponent .Comment: Revtex 3.0, 10 pages + 5 postscript figures available upon request,
UCSBTH-94-1
- …