373 research outputs found

    Efficient Implementation of a Synchronous Parallel Push-Relabel Algorithm

    Full text link
    Motivated by the observation that FIFO-based push-relabel algorithms are able to outperform highest label-based variants on modern, large maximum flow problem instances, we introduce an efficient implementation of the algorithm that uses coarse-grained parallelism to avoid the problems of existing parallel approaches. We demonstrate good relative and absolute speedups of our algorithm on a set of large graph instances taken from real-world applications. On a modern 40-core machine, our parallel implementation outperforms existing sequential implementations by up to a factor of 12 and other parallel implementations by factors of up to 3

    Variable length-based genetic representation to automatically evolve wrappers

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-12433-4_44Proceedings 8th International Conference on Practical Applications of Agents and Multiagent SystemsThe Web has been the star service on the Internet, however the outsized information available and its decentralized nature has originated an intrinsic difficulty to locate, extract and compose information. An automatic approach is required to handle with this huge amount of data. In this paper we present a machine learning algorithm based on Genetic Algorithms which generates a set of complex wrappers, able to extract information from theWeb. The paper presents the experimental evaluation of these wrappers over a set of basic data sets.This work has been partially supported by the Spanish Ministry of Science and Innovation under the projects Castilla-La Mancha project PEII09-0266-6640, COMPUBIODIVE (TIN2007-65989), and by V-LeaF (TIN2008-02729-E/TIN)

    The three-dimensional random field Ising magnet: interfaces, scaling, and the nature of states

    Get PDF
    The nature of the zero temperature ordering transition in the 3D Gaussian random field Ising magnet is studied numerically, aided by scaling analyses. In the ferromagnetic phase the scaling of the roughness of the domain walls, w∌Lζw\sim L^\zeta, is consistent with the theoretical prediction ζ=2/3\zeta = 2/3. As the randomness is increased through the transition, the probability distribution of the interfacial tension of domain walls scales as for a single second order transition. At the critical point, the fractal dimensions of domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least two distinct physically important fractal dimensions. These dimensions are argued to be related to combinations of the energy scaling exponent, Ξ\theta, which determines the violation of hyperscaling, the correlation length exponent Îœ\nu, and the magnetization exponent ÎČ\beta. The value ÎČ=0.017±0.005\beta = 0.017\pm 0.005 is derived from the magnetization: this estimate is supported by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating the disordered phase with one ground state from the ordered phase with two ground states. The array of results are shown to be consistent with a scaling picture and a geometric description of the influence of boundary conditions on the spins. The details of the algorithm used and its implementation are also described.Comment: 32 pp., 2 columns, 32 figure

    Low noise amplication of an optically carried microwave signal: application to atom interferometry

    Get PDF
    In this paper, we report a new scheme to amplify a microwave signal carried on a laser light at λ\lambda=852nm. The amplification is done via a semiconductor tapered amplifier and this scheme is used to drive stimulated Raman transitions in an atom interferometer. Sideband generation in the amplifier, due to self-phase and amplitude modulation, is investigated and characterized. We also demonstrate that the amplifier does not induce any significant phase-noise on the beating signal. Finally, the degradation of the performances of the interferometer due to the amplification process is shown to be negligible

    Adaptations in the Temporalis Muscles of Rabbits after Masseter Muscle Removal

    Full text link
    Masseter muscles were surgically removed in six young female rabbits so that we could study adaptations of the superficial temporalis muscles (ST) to increased functional requirements. Eight weeks following surgery, we used morphological measurements, histochemistry, contractile properties in situ, and occlusal force in vivo to compare the muscles in the experimental animals and six control rabbits. Analysis of the results demonstrated a decrease in fatigability of ST after masseter myectomy. Incisal occlusal force decreased by 65% during the first two weeks, and no recovery was observed during the following six weeks. At eight weeks post-surgery, the mass, twitch tensions, and tetanic tensions of ST were not significantly different from those of the controls. An increase in the percent of the cross-sectional area composed of fast fatigue-resistant fibers, a slower time-to-peak twitch tension, and a decrease in fatigability suggest an increase in oxidative metabolism. Analysis of these results suggests that muscles used for highly repetitious activities with submaximal loadings adapt to increased functional requirements by increasing fatigue-resistant properties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68261/2/10.1177_00220345860650110201.pd

    Winnowing Wheat from Chaff: The Chunking GA

    Full text link
    In this work, we investigate the ability of a Chunking GA (ChGA) to reduce the size of variable length chromosomes and control bloat. The ChGA consists of a standard genetic algorithm augmented by a communal building block memory system and associated memory chromosomes and operators. A new mxn MaxSum fitness function used for this work is also described. Results show that a ChGA equipped with memory capacity equal to or greater than the minimal size of an optimal solution naturally eliminates unexpressed genes. © Springer-Verlag Berlin Heidelberg 2004

    Low-energy excitations in the three-dimensional random-field Ising model

    Get PDF
    The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-energy excitations for the three-dimensional RFIM with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze several properties of these clusters. Our results support the validity of the droplet-model description for the RFIM.Comment: 10 pages, 9 figure

    On the Crossing Spanning Tree Problem

    Full text link

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.
    • 

    corecore