742 research outputs found

    The use of uplift modelling in the reconstruction of drainage development and landscape evolution in the repeatedly glaciated Trent catchment, English Midlands, UK

    Get PDF
    The Trent Valley Palaeolithic Project has recently investigated the Quaternary evolution of the River Trent, the northernmost river system in western Europe with a documented long-timescale terrace staircase. The uppermost and lowermost reaches of the Trent, which drains the English Midlands, were glaciated during Marine oxygen Isotope Stage (MIS) 2, but older fluvial terraces dating back to MIS 8 are preserved in the remainder of the catchment, delineating the former course through the Lincoln Gap and across the Fen Basin (the modern course to the Humber estuary dating only from the latest Pleistocene). Numerical modelling enables lateral variations in uplift across the catchment to be deduced from differences in height of these fluvial terraces above the modern valley floor. Uplift rates thus indicated over the last two climate cycles attain values of ∌0.08 mm a−1 around Nottingham and Derby in the middle reach of the Trent, but are significantly lower elsewhere in the catchment; these variations are shown to relate to lateral variations in crustal properties, primarily variations in radioactive heat production in the underlying continental crust. Glaciation during the late Middle Pleistocene (MIS 8) caused significant changes to the Trent catchment, including the integration of the modern Upper Trent with the rest of the system. Older sedimentary evidence is much more fragmentary, but is used along with the results of the uplift modelling to reconstruct the earlier drainage. It is thus inferred that between the Anglian (MIS 12) and Wragby (MIS 8) glaciations the Trent already flowed into the Fen Basin via the Lincoln Gap, but the smaller-than-present catchment, indicated by gravel lithology, resulted in a much steeper longitudinal gradient, such that during interglacials (MIS 11 and 9) an elongated estuary would have developed, extending inland almost to the present location of Newark. Prior to the Anglian, much of the modern Trent catchment, including the rivers Derwent and Dove, drained into the former Bytham River. The modern Middle Trent catchment downstream of Nottingham was drained by a relatively small ‘Ancaster Trent’ river, which flowed above the Ancaster Gap; analysis of gravel lithology suggests that it probably joined the Bytham in the area that now forms the Fen Basin

    Cellular Models for River Networks

    Full text link
    A cellular model introduced for the evolution of the fluvial landscape is revisited using extensive numerical and scaling analyses. The basic network shapes and their recurrence especially in the aggregation structure are then addressed. The roles of boundary and initial conditions are carefully analyzed as well as the key effect of quenched disorder embedded in random pinning of the landscape surface. It is found that the above features strongly affect the scaling behavior of key morphological quantities. In particular, we conclude that randomly pinned regions (whose structural disorder bears much physical meaning mimicking uneven landscape-forming rainfall events, geological diversity or heterogeneity in surficial properties like vegetation, soil cover or type) play a key role for the robust emergence of aggregation patterns bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure

    Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium

    Full text link
    We calculate three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the diagrams with the first order electron and muon polarization loop insertions in graphs with two exchanged photons. These corrections are enhanced by the large logarithm of the electron-muon mass ratio. The leading logarithm squared contribution was obtained a long time ago. Here we calculate the single-logarithmic and nonlogarithmic contributions. We previously calculated the three-loop radiative-recoil corrections generated by two-loop polarization insertions in the exchanged photons. The current paper therefore concludes calculation of all three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by diagrams with closed fermion loop insertions in the exchanged photons. The new results obtained here improve the theory of hyperfine splitting, and affect the value of the electron-muon mass ratio extracted from experimental data on the muonium hyperfine splitting.Comment: 27 pages, 6 figures, 7 table

    Three femoral stem designs without corrosion: A review of 2095 stems

    Get PDF
    © 2020 Naudie et al. Introduction: Corrosion at the head–neck interface of modular components in total hip arthroplasty (THA) has been reported as a cause of failure of modern total hip replacement implants. While this method of failure has been well described, it remains poorly understood. The purpose of this study is to review the three most commonly used uncemented femoral stems at our institution over the last fifteen years and to correlate any established risk factors with rates of revision, particularly corrosion. Methods: We reviewed 2095 patients from March 2000 to September 2015 who underwent total hip arthroplasty with one of three uncemented femoral stem designs. All stems were made of a Ti6Al4V alloy with a 12/14 taper design. We included only those stems coupled with a CoCr head and a highly crosslinked polyethylene liner. We evaluated age, gender, body mass index (BMI), femoral head size, head length, neck angle and offset and correlated these to the incidence of all cause revision, as well as revision excluding infection. Results: There were no recognized corrosion-related revisions identified. There was no association between age, BMI, gender, head length, neck angle and offset to all cause revision or revision with infection excluded (p\u3e0.05). Femoral head size less than 32mm was associated with higher all cause revision rates (OR 4.60 (95% CI 1.8, 11.8)) and when excluding infection as a reason for revision (OR 4.94 (95% CI 1.7, 14.41)). Conclusion: Over the last fifteen years, we have not identified any cases of corrosion with the three most commonly used femoral stems used at out institution. While we acknowledge that no femoral stem is immune to corrosion, certain femoral stem designs may be uniquely resistant to this mode of failure. Level of Evidence: III

    Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

    Get PDF
    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV < Eee < 30 keV nuclear recoil events is equal to 21.0 ns +/- 0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ~ 30 ns at Eee ~ 15 keV. Electron and nuclear recoil pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.Comment: 11 pages, including 5 encapsulated postscript figure

    Neutron background in large-scale xenon detectors for dark matter searches

    Full text link
    Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (alpha,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 10−9−10−1010^{-9}-10^{-10} pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.Comment: 35 pages, 13 figures, 2 tables, accepted for publication in Astroparticle Physic

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Recommendations for cardiovascular health and disease surveillance for 2030 and beyond: A policy statement from the american heart association

    Get PDF
    The release of the American Heart Association's 2030 Impact Goal and associated metrics for success underscores the importance of cardiovascular health and cardiovascular disease surveillance systems for the acquisition of information sufficient to support implementation and evaluation. The aim of this policy statement is to review and comment on existing recommendations for and current approaches to cardiovascular surveillance, identify gaps, and formulate policy implications and pragmatic recommendations for transforming surveillance of cardiovascular disease and cardiovascular health in the United States. The development of community platforms coupled with widespread use of digital technologies, electronic health records, and mobile health has created new opportunities that could greatly modernize surveillance if coordinated in a pragmatic matter. However, technology and public health and scientific mandates must be merged into action. We describe the action and components necessary to create the cardiovascular health and cardiovascular disease surveillance system of the future, steps in development, and challenges that federal, state, and local governments will need to address. Development of robust policies and commitment to collaboration among professional organizations, community partners, and policy makers are critical to ultimately reduce the burden of cardiovascular disease and improve cardiovascular health and to evaluate whether national health goals are achieved

    Perception of Relative Depth Interval: Systematic Biases in Perceived Depth

    Get PDF
    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.</jats:p
    • 

    corecore