13 research outputs found

    The role of alloy composition in the heat treatment of aluminium high pressure die castings

    Get PDF
    High pressure die-cast (HPDC) aluminium components that respond to age hardening cannot normally be solution treated at high temperatures because the presence of internal porosity and entrapped gases leads to the formation of surface blisters. Parts may also become dimensionally unstable due to swelling. These factors that prevent heat treatment present significant limitations to the utilisation of HPDC components. Now it has been found that blistering and dimensional change can be avoided by using modified shorter solution treatment procedures which still allow strong responses to age hardening to be achieved with a wide range of Al-Si-(Cu/Mg) alloys. In the present paper, the roles of critical alloying elements are considered in both current commercial and experimental alloy compositions in this series. It is shown that values of 0.2% proof stress exceeding 400 MPa may be readily achieved by heat treating conventionally produced HPDC components

    Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing

    Get PDF
    Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. We argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration.The main sponsor of the Symposium was the CSIRO Research Office. Co-sponsors were The University of Melbourne, RMIT University, and the software companies associated with ThingWorx, Solvia, MSC Simufact, Materialise and Flow-3D

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    The effects of microstructure heterogeneities and casting defects on the mechanical properties of high-pressure die-cast AlSi9Cu3(Fe) alloys

    No full text
    Detailed investigations of the salient microstructural features and casting defects of the high-pressure die-cast (HPDC) AlSi9Cu3(Fe) alloy are reported. These characteristics are addressed to the mechanical properties and reliability of separately HPDC tensile bars. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes throughout the tensile specimen. The results indicate that the die-cast microstructure consists of several microstructural heterogeneities such as positive eutectic segregation bands, externally solidified crystals (ESCs) cold flakes, primary Fe-rich intermetallics (sludge) and porosities. In addition, it results that sludge particles, gas porosity, as well as ESCs and cold flakes are concentrated toward the casting centre while low porosity and fine-grained structure is observed on the surface layer of the castings bars. The local variation of the hardness along the cross section as well as the change of tensile test results as a function of gauge diameter of the tensile bars seem to be ascribed to the change of porosity content, eutectic fraction and amount of sludge. Further, this behavior reflects upon the reliability of the die-cast alloy, as evidenced by the Weibull statistics

    Relationship between tensile and shear strengths of the mushy zone in solidifying aluminum alloys

    No full text
    Strength development in the mushy zone during solidification of three aluminum alloys (Al-4 wt pct Cu, Al-7 wt pct Si-1 wt pct Cu, and Al-7 wt pct Si-4 wt pct Cu) has been measured with two different techniques - horizontal tensile testing and direct shear cell testing. The strength results from the two methods correspond with one another to a much higher degree than suggested by the results presented in the literature. Tensile strength starts to develop at the maximum packing solid fraction, confirmed by the shear strength measurements. The maximum packing fraction represents the point where the internal network structure of the mushy zone is established and ligaments of the network must be broken to rearrange the dendrites. The data indicate a converging trend of the shear and tensile strength at high solid fractions, therefore indicating that the deformation mechanisms are also becoming similar. The results presented in this article suggest that it is possible to develop constitutive equations for the mechanical properties of the mushy zone over the entire solid fraction regime, i.e., from coherency to complete solidification. These equations could be used for the prediction of stress development as well as defect formation

    Feeding mechanisms in high-pressure die castings

    No full text
    This work focuses on understanding the feeding behavior during high-pressure die casting (HPDC). The effects of intensification pressure (IP) and gate thickness on the transport of material through the gate during the latter stages of HPDC were investigated using an Al-Si3MgMn alloy. Microstructural characterization of the gate region indicated a marked change in feeding mechanism with increasing IP and gate size. Castings produced with a high IP or thick gate contained a relatively low fraction of total porosity, and shear band-like features existed through the gate, suggesting that semisolid strain localization in the gate is involved in feeding during the pressure intensification stage. When a low IP is combined with a thin gate, no shear band is observed in the gate and feeding is less effective, resulting in a higher level of porosity in the HPDC component. Although shear banding through the gate was found to reduce porosity in HPDC parts, if gates are not properly designed, deformation of the mushy zone through the gate can cause severe macrosegregation, large pores, and large cracks, which could severely reduce the performance of the component
    corecore