658 research outputs found
In vivo metabolism of unsaturated fatty acids in Sepia officinalis hatchlings
Versión del editor2,041
A skeleton approximate solution of the Einstein field equations for multiple black-hole systems
An approximate analytical and non-linear solution of the Einstein field
equations is derived for a system of multiple non-rotating black holes. The
associated space-time has the same asymptotic structure as the Brill-Lindquist
initial data solution for multiple black holes. The system admits an
Arnowitt-Deser-Misner (ADM) Hamiltonian that can particularly evolve the
Brill-Lindquist solution over finite time intervals. The gravitational field of
this model may properly be referred to as a skeleton approximate solution of
the Einstein field equations. The approximation is based on a conformally flat
truncation, which excludes gravitational radiation, as well as a removal of
some additional gravitational field energy. After these two simplifications,
only source terms proportional to Dirac delta distributions remain in the
constraint equations. The skeleton Hamiltonian is exact in the test-body limit,
it leads to the Einsteinian dynamics up to the first post-Newtonian
approximation, and in the time-symmetric limit it gives the energy of the
Brill-Lindquist solution exactly. The skeleton model for binary systems may be
regarded as a kind of analytical counterpart to the numerical treatment of
orbiting Misner-Lindquist binary black holes proposed by Gourgoulhon,
Grandclement, and Bonazzola, even if they actually treat the corotating case.
Along circular orbits, the two-black-hole skeleton solution is quasi-stationary
and it fulfills the important property of equality of Komar and ADM masses.
Explicit calculations for the determination of the last stable circular orbit
of the binary system are performed up to the tenth post-Newtonian order within
the skeleton model.Comment: 15 pages, 1 figure, submitted to Phys. Rev. D, 3 references added,
minor correction
The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain
Objective: Nerve growth factor (NGF) has a pivotal role in peripheral hyperalgesia and inflammation; anti-NGF antibodies attenuate pain responses in inflammatory pain models, and in people with osteoarthritis (OA) or low back pain. The aim of this study was to characterise the peripheral mechanisms contributing to the analgesic effects of anti-NGF antibody treatment in an established model of joint pain, which mimics key clinical features of OA.
Design: Effects of preventative vs therapeutic treatment with an anti-NGF antibody (monoclonal antibody 911: muMab 911 (10 mg/kg, s.c.)) on pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWT)), cartilage damage, synovitis and numbers of subchondral osteoclasts were investigated in the monosodium iodoacetate (MIA) model. Potential direct effects of NGF on receptor activator of nuclear factor kappa-B ligand (RANKL) mediated osteoclastogenesis were investigated in cultured human osteoclasts.
Results: Intra-articular MIA injection resulted in significant pain behaviour, cartilage damage, synovitis and increased numbers of subchondral osteoclasts. Both preventative and therapeutic treatment with muMab 911 significantly prevented, or reversed, MIA-induced pain behaviour, but did not alter cartilage or synovial pathology quantified at the end of the treatment period. NGF did not facilitate RANKL driven osteoclast differentiation in vitro, but preventative or therapeutic muMab 911 reduced numbers of TRAP positive osteoclasts in the subchondral bone.
Conclusions: We demonstrate that anti-NGF antibody treatment attenuates OA pain behaviour despite permitting cartilage damage and synovitis. Indirec
Energy generation in a Microbial Fuel Cell using anaerobic sludge from a wastewater treatment plant
ABSTRACT In microbial fuel cells (MFCs), the oxidation of organic compounds catalyzed by microorganisms (anode) generates electricity via electron transfer to an external circuit that acts as an electron acceptor (cathode). Microbial fuel cells differ in terms of the microorganisms employed and the nature of the oxidized organic compound. In this study, a consortium of anaerobic microorganisms helped to treat the secondary sludge obtained from a sewage treatment plant. The microorganisms were grown in a 250 mL bioreactor containing a carbon cloth. The reactor was fed with media containing acetate (as the carbon source) for 48 days. Concomitantly, the electrochemical data were measured with the aid of a digital multimeter and data acquisition system. At the beginning of the MFC operation, power density was low, probably due to slow microorganism growth and adhesion. The power density increased from the 15th day of operation, reaching a value of 13.5 μW cm–2 after ca. 24 days of operation, and remained stable until the end of the process. Compared with data in the literature, this power density value is promising; improvements in the MFC design and operation could increase this value even further. The system investigated herein employed excess sludge as a biocatalyst in an MFC. This opens up the possibility of using organic acids and/or carbohydrate-rich effluents to feed MFCs, and thereby provide simultaneous effluent treatment and energy generation
- …