2,546 research outputs found

    Muon Spectra of Quasi-Elastic and 1-Pion Production Events in LBL Neutrino Oscillation Experiments

    Full text link
    The muon energy spectra of the quasi-elastic and 1-pion production events in a LBL experiment, like K2K, are predicted to follow closely the neutrino energy spectrum, with downward shifts of the energy scale by /2M/2 M and (+MΔ2M2)/2M( + M_\Delta^2 - M^2)/2 M respectively. These predictions seem to agree with the observed muon spectra in the K2K nearby detector. The corresponding muon spectra in the far-away (SK) detector are predicted to show characteristic spectral distortions induced by νμ\nu_\mu oscillation. Comparison of the predicted spectral distortions with the observed muon spectra of the 1-Ring and 2-Ring muon events in the SK detector will help to determine the oscillation parameters. The results will be applicable to other LBL experiments as well.Comment: 13 pages. One figure and a few comments added, final version to appear in P

    MEIS investigations of surface structure

    Get PDF
    The early work of the FOM-AMOLF group in Amsterdam clearly demonstrated the potential of medium energy ion scattering (MEIS), typically using 100 keV H+ incident ions, to investigate the structure of surfaces, but most current applications of the method are focussed on near-surface compositional studies of non-crystalline films. However, the key strengths of the MEIS technique, notably the use of blocking curves in double-alignment experiments and absolute yield measurements, are extremely effective in providing detailed near-surface structural information for a wide range of crystalline materials. This potential and the underlying methodology, is illustrated through examples of applications to the study of layer-dependent composition and structure in alloy surfaces, in studies of the surface crystallography of an oxide surface (rutile TiO2(1 1 0)) and in investigations of complex adsorbate-induced reconstruction of metal surfaces, including the pseudo-(1 0 0) reconstruction of Cu(1 1 1) induced by adsorption of atomic N and molecular methylthiolate (CH3S–). In addition to the use of calibrated blocking curves, the use of the detailed spectral shape of the surface peak in the scattered ion energy spectra, as a means of providing single-atomic layer resolution of the surface structure, is also discussed

    Methylthiolate-induced reconstruction of Ag(1 1 1): A medium energy ion scattering study

    Get PDF
    Medium energy ion scattering (MEIS), using 100 keV H+ incident ions, has been used to investigate the structure of the Ag(1 1 1)(√7 × √7)R19° –CH3S surface phase. The results provide the first direct evidence that this structure does involve substantial reconstruction of the Ag surface layer. The measured absolute scattered ion yields and blocking curves are in generally good agreement with a specific structural model of the surface based on a reconstructed layer containing 3/7 ML Ag atoms, previously suggested on the basis of scanning tunnelling microscopy (STM) and normal incidence X-ray standing wave (NIXSW) studies. However, the MEIS data indicate that any rumpling of the thiolate layer, is small, and probably 0.2 Å. This value is smaller than the amplitude suggested in the STM and NIXSW studies, but could be entirely consistent with the earlier experimental data

    Bi-partite mode entanglement of bosonic condensates on tunneling graph

    Get PDF
    We study a set of LL spatial bosonic modes localized on a graph Γ.\Gamma. The particles are allowed to tunnel from vertex to vertex by hopping along the edges of Γ.\Gamma. We analyze how, in the exact many-body eigenstates of the system i.e., Bose-Einstein condensates over single-particle eigenfunctions, the bi-partite quantum entanglement of a lattice vertex with respect to the rest of the graph depends on the topology of Γ.\Gamma.Comment: 3 Pages LaTeX, 2 Figures include

    Clifford algebras and universal sets of quantum gates

    Get PDF
    In this paper is shown an application of Clifford algebras to the construction of computationally universal sets of quantum gates for nn-qubit systems. It is based on the well-known application of Lie algebras together with the especially simple commutation law for Clifford algebras, which states that all basic elements either commute or anticommute.Comment: 4 pages, REVTeX (2 col.), low-level language corrections, PR

    Universality of the Crossing Probability for the Potts Model for q=1,2,3,4

    Full text link
    The universality of the crossing probability πhs\pi_{hs} of a system to percolate only in the horizontal direction, was investigated numerically by using a cluster Monte-Carlo algorithm for the qq-state Potts model for q=2,3,4q=2,3,4 and for percolation q=1q=1. We check the percolation through Fortuin-Kasteleyn clusters near the critical point on the square lattice by using representation of the Potts model as the correlated site-bond percolation model. It was shown that probability of a system to percolate only in the horizontal direction πhs\pi_{hs} has universal form πhs=A(q)Q(z)\pi_{hs}=A(q) Q(z) for q=1,2,3,4q=1,2,3,4 as a function of the scaling variable z=[b(q)L1ν(q)(ppc(q,L))]ζ(q)z= [ b(q)L^{\frac{1}{\nu(q)}}(p-p_{c}(q,L)) ]^{\zeta(q)}. Here, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed, A(q)A(q) is the nonuniversal crossing amplitude, b(q)b(q) is the nonuniversal metric factor, ζ(q)\zeta(q) is the nonuniversal scaling index, ν(q)\nu(q) is the correlation length index. The universal function Q(x)exp(z)Q(x) \simeq \exp(-z). Nonuniversal scaling factors were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed, journal-ref added

    Quasiparticles as composite objects in the RVB superconductor

    Full text link
    We study the nature of the superconducting state, the origin of d-wave pairing, and elementary excitations of a resonating valence bond (RVB) superconductor. We show that the phase string formulation of the t-J model leads to confinement of bare spinon and holon excitations in the superconducting state, though the vacuum is described by the RVB state. Nodal quasiparticles are obtained as composite excitations of spinon and holon excitations. The d-wave pairing symmetry is shown to arise from short range antiferromagnetic correlations

    The local adsorption structure of methylthiolate and butylthiolate on Au(1 1 1): a photoemission core-level shift investigation

    Get PDF
    Measurements of the core-level shifts in Au 4f photoemission spectra from Au(1 1 1) at different coverages of methylthiolate and butylthiolate are reported. Adsorption leads to two components in addition to that from the bulk, one at lower photoelectron binding energy attributed to surface atoms not bonded to thiolate species, while the second component has a higher binding energy and is attributed to Au atoms bonded to the surface thiolate. The relative intensities of these surface components for the saturation coverage (mainly (√3 × √3)R30°) phases are discussed in terms of different local adsorption sites in a well-ordered surface, and favour adsorption of the thiolate species atop Au adatoms. Alternative interpretations that might be consistent with an Au-adatom-dithiolate model are discussed, particularly in the context of the possible influence of reduced coverage associated with a disordered surface. Marked differences from previously-reported results for longer-chain alkylthiolate layers are highlighted

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Two-particle pairing and phase separation in a two-dimensional Bose-gas with one or two sorts of bosons

    Full text link
    We present a phase diagram for a dilute two-dimensional Bose-gas on a lattice. For one sort of boson we consider a realistic case of the van der Waals interaction between particles with a strong hard-core repulsion UU and a van der Waals attractive tail VV. For V<2tV< 2 t , tt being a hopping amplitude, the phase diagram of the system contains regions of the usual one-particle Bose-Einstein condensation (BEC). However for V>2tV>2t we have total phase separation on a Mott-Hubbard Bose solid and a dilute Bose gas. For two sorts of structureless bosons described by the two band Hubbard model an s-wave pairing of the two bosons of different sort 0 \neq 0 is possible. The results we obtained should be important for different Bose systems, including submonolayers of 4^4He, excitons in semiconductors, Schwinger bosons in magnetic systems and holons in HTSC. In the HTSC case a possibility of two-holon pairing in the slave-bosons theories of superconductivity can restore a required charge 2e2e of a Cooper pair.Comment: 10 pages, 2 figure
    corecore