50 research outputs found

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    IMAGINE: A comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays

    Get PDF
    International audienceIn this white paper we introduce the IMAGINE Consortium and its scientific background, goals and structure. The purpose of the consortium is to coordinate and facilitate the efforts of a diverse group of researchers in the broad areas of the interstellar medium, Galactic magnetic fields and cosmic rays, and our overarching goal is to develop more comprehensive insights into the structures and roles of interstellar magnetic fields and their interactions with cosmic rays within the context of Galactic astrophysics. The ongoing rapid development of observational and numerical facilities and techniques has resulted in a widely felt need to advance this subject to a qualitatively higher level of self-consistency, depth and rigour. This can only be achieved by the coordinated efforts of experts in diverse areas of astrophysics involved in observational, theoretical and numerical work. We present our view of the present status of this research area, identify its key unsolved problems and suggest a strategy that will underpin our work. The backbone of the consortium is the Interstellar MAGnetic field INference Engine, a publicly available Bayesian platform that employs robust statistical methods to explore the multi-dimensional likelihood space using any number of modular inputs. This tool will be used by the IMAGINE Consortium to develop an interpretation and modelling framework that provides the method, power and flexibility to interfuse information from a variety of observational, theoretical and numerical lines of evidence into a self-consistent and comprehensive picture of the thermal and non-thermal interstellar media. An important innovation is that a consistent understanding of the phenomena that are directly or indirectly influenced by the Galactic magnetic field, such as the deflection of ultra-high energy cosmic rays or extragalactic backgrounds, is made an integral part of the modelling. The IMAGINE Consortium, which is informal by nature and open to new participants, hereby presents a methodological framework for the modelling and understanding of Galactic magnetic fields that is available to all communities whose research relies on a state of the art solution to this problem

    IMAGINE: a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays

    No full text
    corecore