46 research outputs found

    7Be ^7 Be Neutrino Signal Variation in KamLAND

    Full text link
    Large Mixing Angle (LMA) neutrino oscillation is the main solution for the long-standing Solar Neutrino Problem (SNP). Whether there is any subdominant effect accompanying the dominant LMA solution can not be ruled out at the moment, but will be settled by the forthcoming data from highly skilled real time experiments targeting essentially the low energy domain of solar neutrinos. Assuming a subdominant effect converting one of the active neutrinos into a sterile partner in the varying solar field with changing sunspot activity, we performed field-profile-independent predictions for 7Be^7 Be neutrino signal variation, which might be tested in the KamLAND's future solar neutrino detection program. We found that after a substantial reduction of background and running of KamLAND solar mode through the sunspot maximum period (around 2010 - 2012), when the solar field at the resonance may vary from few kGkG to 300 kG300~kG, the subdominant time variation effect might be clearly visible (more than 5σ5\sigma) for 7Be^7 Be neutrinos.Comment: 12 pages, 4 figures, typos corrected. To appear in JHE

    Global Analysis with SNO: Toward the Solution of the Solar Neutrino Problem

    Full text link
    We perform a global analysis of the latest solar neutrino data including the SNO result on the CC-event rate. This result further favors the LMA solution of the solar neutrino problem. The best fit values of parameters we find are: \Delta m^2 = (4.8 - 5.0)10^{-5} eV^2, tan^2 \theta = 0.35 - 0.38, f_B = 1.08 - 1.12, and f_{hep} = 1 - 4. With respect to this best fit the LOW solution is accepted at 90% C.L.. The Vacuum oscillation solution with \Delta m^2 = 1.4 10^{-10} eV^2, gives good fit of the data provided that the boron neutrino flux is substantially smaller than the SSM flux (f_B \sim 0.5). The SMA solution is accepted only at 3\sigma level. We find that vacuum oscillations to sterile neutrino, VAC(sterile), with f_B \sim 0.5 also give rather good global fit of the data. All other sterile solutions are strongly disfavored. We check the quality of the fit by constructing the pull-off diagrams of observables. Predictions for the day-night asymmetry, spectrum distortion and NC/CC ratio at SNO are calculated. In the best fit points of the global solutions we find: A_{DN}^{CC} \approx (7 - 8)% for LMA, \sim 3% for LOW, and (2 - 3)% for SMA. It will be difficult to see the distortion of the spectrum expected for LMA as well as LOW solutions. However, future SNO spectral data can significantly affect the VAC and SMA solutions. We also calculate expectations for the BOREXINO rate.Comment: 35 pages, latex, 9 figures; results of analysis slightly changed due to different treatment of the hep neutrino flux; predictions for NC/CC ratio and Borexino rate adde

    Low Energy Solar Neutrinos and Spin Flavour Precession

    Full text link
    The possibility that the Gallium data effectively indicates a time modulation of the solar active neutrino flux in possible connection to solar activity is examined on the light of spin flavour precession to sterile neutrinos as a subdominant process in addition to oscillations. We distinguish two sets of Gallium data, relating them to high and low solar activity. Such modulation affects principally the low energy neutrinos (pppp and 7Be^7 Be) so that the effect, if it exists, will become most clear in the forthcoming Borexino and LENS experiments and will provide evidence for a neutrino magnetic moment. Using a model previously developed, we perform two separate fits in relation to low and high activity periods to all solar neutrino data. These fits include the very recent charged current spectrum from the SNO experiment. We also derive the model predictions for Borexino and LENS experiments.Comment: 20 pages, 5 ps figures, 1 eps figure, final version to be published in JHE

    Large Mixing Induced by the Strong Coupling with a Single Bulk Neutrinos

    Get PDF
    Neutrino is a good probe of extra dimensions. Large mixing and the apparent lack of very complicated oscillation patterns may be an indication of large couplings between the brane and a single bulk neutrino. A simple and realistic five-dimensional model of this kind is discussed. It requires a sterile in addition to three active neutrinos on the brane, all coupled strongly to one common bulk neutrino, but not directly among themselves. Mindful that sterile neutrinos are disfavored in the atmospheric and solar data, we demand induced mixing to occur among the active neutrinos, but not between the active and the sterile. The size RR of the extra dimension is arbitrary in this model, otherwise it contains six parameters which can be used to fit the three neutrino masses and the three mixing angles. However, in the model those six parameters must be suitably ordered, so a successful fit is not guaranteed. It turns out that not only the data can be fitted, but as a result of the ordering, a natural connection between the smallness of the reactor angle θ13\theta_{13} and the smallness of the mass-gap ratio ΔMsolar2/ΔMatmospheric2\Delta M^2_{solar}/\Delta M^2_{atmospheric} can be derived.Comment: Misprints above eq. (22) corrected. To appear in PR

    ARE THERE STERILE NEUTRINOS IN THE FLUX OF SOLAR NEUTRINOS ON THE EARTH?

    Full text link
    It is shown that the future SNO and Super-Kamiokande experiments, in which high energy 8B^8\mathrm{B} neutrinos will be detected through the observation of CC, NC and ν\nu--ee elastic scattering processes, could allow to reveal in a model independent way the presence of sterile neutrinos in the flux of solar neutrinos on the earth. Lower bounds for different averaged values of the probability of transition of solar νe\nu_e's into sterile states and for the total flux of 8B^8\mathrm{B} neutrinos are derived in terms of measurable quantities. The possibilities to reveal the presence of νμ\nu_\mu and/or ντ\nu_\tau in the solar neutrino flux on the earth are also considered and the case of transitions of solar νe\nu_e's only into sterile states is discussed. Some numerical results for a simple model with νe\nu_e--νs\nu_s mixing are given.Comment: Revised reference list. Revtex file, 15 pages + 4 figures (included). The postscript file of text and figures is available at ftp://toxd01.to.infn.it/pub/giunti/1995/dftt-12-95/dftt-12-95.ps.

    Comparative analysis of Gallex and GNO solar neutrino data

    Full text link
    Since the GALLEX and GNO datasets were derived from closely related experiments, there is a natural tendency to merge them. This is perhaps appropriate for any analysis based on the hypothesis that the solar neutrino flux is constant, but it is not necessarily appropriate for an analysis that allows for possible variability, since the GALLEX and GNO experiments belong to different solar cycles. Moreover, we find significant differences between the GALLEX and GNO datasets. It appears, from inspection of the time series and histograms, that GNO measurements are compatible with the assumption that the solar neutrino flux is constant, but GALLEX measurements are not. Furthermore, power-spectrum analysis yields evidence of rotational modulation in GALLEX data but not in GNO data. We compare our results with those of Pandola, who claims that GALLEX-GNO data show no evidence for variability.Comment: 20 pages plus 6 tables plus 11 figure

    ASTEC -- the Aarhus STellar Evolution Code

    Full text link
    The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.Comment: Astrophys. Space Sci, in the pres

    Constraining neutrino oscillation parameters with current solar and atmospheric data

    Get PDF
    We analyze the impact of recent solar, atmospheric and reactor data in the determination of the neutrino oscillation parameters, taking into account that both the solar nu_e and the atmospheric nu_mu may convert to a mixture of active and sterile neutrinos. We use the most recent global solar neutrino data, including the 1496-day Super-K neutrino data sample, and we investigate in detail the impact of the SNO neutral current, spectral and day/night data by performing also an analysis using only the charged current rate from SNO. The implications of the first 145.1 days of KamLAND data on the determination of the solar neutrino parameters are also discussed in detail. We confirm the clear preference of solar+reactor data for the pure active LMA-MSW solution of the solar neutrino problem, and obtain that the LOW, VAC, SMA and Just-So^2 solutions are disfavored with a Delta_chi^2 = 22, 22, 36, 44, respectively. Furthermore, we find that the global solar data constrains the admixture of a sterile neutrino to be less than 43% at 99% CL. By performing an improved fit of the atmospheric data, we also update the corresponding regions of oscillation parameters. We find that the recent atmospheric Super-K (1489-day) and MACRO data have a strong impact on constraining a sterile component in atmospheric oscillations: if the nu_mu is restricted to the atmospheric mass states only a sterile admixture of 16% is allowed at 99% CL, while a bound of 35% is obtained in the unconstrained case. Pure sterile oscillations are disfavored with a Delta_chi^2 = 34.6 compared to the pure active case.Comment: 28 pages, LaTeX file using RevTEX4, 12 figures and 3 tables included. Improved version including the new KamLAND dat

    Evidence for Solar Neutrino Flux Variability and its Implications

    Full text link
    Althogh KamLAND apparently rules out Resonant-Spin-Flavor-Precession (RSFP) as an explanation of the solar neutrino deficit, the solar neutrino fluxes in the Cl and Ga experiments appear to vary with solar rotation. Added to this evidence, summarized here, a power spectrum analysis of the Super-Kamiokande data reveals significant variation in the flux matching a dominant rotation rate observed in the solar magnetic field in the same time period. Three frequency peaks, all related to this rotation rate, can be explained quantitatively. A Super-Kamiokande paper reported no time variation of the flux, but showed the same peaks, there interpreted as statistically insignificant, due to an inappropriate analysis. This modulation is small (7%) in the Super-Kamiokande energy region (and below the sensitivity of the Super-Kamiokande analysis) and is consistent with RSFP as a subdominant neutrino process in the convection zone. The data display effects that correspond to solar-cycle changes in the magnetic field, typical of the convection zone. This subdominant process requires new physics: a large neutrino transition magnetic moment and a light sterile neutrino, since an effect of this amplitude occurring in the convection zone cannot be achieved with the three known neutrinos. It does, however, resolve current problems in providing fits to all experimental estimates of the mean neutrino flux, and is compatible with the extensive evidence for solar neutrino flux variability.Comment: 9 pages, 10 figures (5 in color); new figure, data added to another figure, more clarification, especially on the origin of the effect and its connection to sterile neutrinos; v3 is updated, especially using the results of hep-ph/0402194; v4 is a further update, mainly of references, with a small change to make the title more appropriate; v5 includes more clarification and the result of now having hep-ph/0411148 and hep-ph/0501205 and so increases the length; v6 has a small change in the title and some additional information at the referee's request to correspond to the version to be published in Astroparticle Physic

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and
    corecore