The possibility that the Gallium data effectively indicates a time modulation
of the solar active neutrino flux in possible connection to solar activity is
examined on the light of spin flavour precession to sterile neutrinos as a
subdominant process in addition to oscillations. We distinguish two sets of
Gallium data, relating them to high and low solar activity. Such modulation
affects principally the low energy neutrinos (pp and 7Be) so that the
effect, if it exists, will become most clear in the forthcoming Borexino and
LENS experiments and will provide evidence for a neutrino magnetic moment.
Using a model previously developed, we perform two separate fits in relation to
low and high activity periods to all solar neutrino data. These fits include
the very recent charged current spectrum from the SNO experiment. We also
derive the model predictions for Borexino and LENS experiments.Comment: 20 pages, 5 ps figures, 1 eps figure, final version to be published
in JHE