181 research outputs found

    Tests of sunspot number sequences: 3. Effects of regression procedures on the calibration of historic sunspot data

    Get PDF
    We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data

    Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response.

    Get PDF
    Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 (LRV1), which has been associated with increased disease severity in animal models and humans and with drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi pathway, which in many organisms controls RNA viruses. We found significant levels (0.4 to 2.5%) of small RNAs derived from LRV1 in both Leishmania braziliensis and Leishmania guyanensis, mapping across both strands and with properties consistent with Dicer-mediated cleavage of the dsRNA genome. LRV1 lacks cis- or trans-acting RNAi inhibitory activities, suggesting that virus retention must be maintained by a balance between RNAi activity and LRV1 replication. To tilt this balance toward elimination, we targeted LRV1 using long-hairpin/stem-loop constructs similar to those effective against chromosomal genes. LRV1 was completely eliminated, at high efficiency, accompanied by a massive overproduction of LRV1-specific siRNAs, representing as much as 87% of the total. For both L. braziliensis and L. guyanensis, RNAi-derived LRV1-negative lines were no longer able to induce a Toll-like receptor 3-dependent hyperinflammatory cytokine response in infected macrophages. We demonstrate in vitro a role for LRV1 in virulence of L. braziliensis, the Leishmania species responsible for the vast majority of mucocutaneous leishmaniasis cases. These findings establish a targeted method for elimination of LRV1, and potentially of other Leishmania viruses, which will facilitate mechanistic dissection of the role of LRV1-mediated virulence. Moreover, our data establish a third paradigm for RNAi-viral relationships in evolution: one of balance rather than elimination

    Using a Collective Impact Framework to Implement Evidence-Based Strategies for Improving Maternal and Child Health Outcomes

    Get PDF
    In 2016, the North Carolina Division of Public Health launched the Improving Community Outcomes for Maternal and Child Health program to invest in evidence-based programs to address three aims: improve birth outcomes, reduce infant mortality, and improve health outcomes for children 0 to 5 years old. Five grantees representing 14 counties were awarded 2 years of funding to implement one evidence-based strategy per aim using a collective impact framework, the principles of implementation science, and a health equity approach. Local health departments served as the backbone organization and provided ongoing support to grantees and helped them form community action teams (CATs) comprising implementation team members, community experts, and relevant stakeholders who met regularly. Focus groups with each grantee’s CAT were held during 2017 and 2019 to explore how CATs used a collective impact framework to implement their chosen evidence-based strategies. Results show that grantees made the most progress engaging diverse sectors in implementing a common agenda, continuous communication, and mutually reinforcing activities. Overall, grantees struggled with a shared measurement system but found that a formal tool to assess equity helped use data to drive decision making and program adaptations. Grantees faced logistical challenges holding regular CAT meetings and sustaining community expert engagement. Overtime, CATs cultivated community partnerships and multicounty collaboratives viewed cross-county knowledge sharing as an asset. Future collective impact initiatives should allow grantees more time upfront to form their CAT to plan for sustained community engagement before implementing programs and to incorporate a tool to center equity in their work

    Global QCD Analysis and the CTEQ Parton Distributions

    Get PDF
    The CTEQ program for the determination of parton distributions through a global QCD analysis of data for various hard scattering processes is fully described. A new set of distributions, CTEQ3, incorporating several new types of data is reported and compared to the two previous sets of CTEQ distributions. Comparison with current data is discussed in some detail. The remaining uncertainties in the parton distributions and methods to further reduce them are assessed. Comparisons with the results of other global analyses are also presented.Comment: (Change in Latex style only: 2up style removed since many don't have it.) 35 pages, 23 figures separately submitted as uuencoded compressed ps-file; Michigan State Report # MSU-HEP/41024 and CTEQ 40

    Probing u-bar/d-bar Asymmetry in the Proton via W and Z Production

    Full text link
    The sensitivity of WW and ZZ production at RHIC to the possible uˉ/dˉ\bar u/\bar d asymmetry in the proton is studied. The ratios of the W+W^+ over WW^- production cross sections in p+pp + p collision, as well as the ratios of the W+W^+ and ZZ production cross sections for p+pp + p over p+dp + d collisions, are shown to be sensitive to this asymmetry. Predictions of various theoretical models for these ratios are presented.Comment: Latex file, ps file, 4 figures Uuencode

    Tests of sunspot number sequences: 2. Using geomagnetic and auroral data

    Get PDF
    We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC (Solar Influences Data Center) composite of Wolf/Zürich/International sunspot number [RISNv1], the group sunspot number [RG] by Hoyt and Schatten (Solar Phys., 181, 491, 1998), the new “backbone” group sunspot number [RBB] by Svalgaard and Schatten (Solar Phys., doi: 10.1007/s11207-015-0815-8, 2016), and the “corrected” sunspot number [RC] by Lockwood, Owens, and Barnard (J. Geophys. Res., 119, 5172, 2014). Each sunspot number is fitted with terrestrial observations, or parameters derived from terrestrial observations to be linearly proportional to sunspot number, over a 30-year calibration interval of 1982 - 2012. The fits are then used to compute test sequences, which extend further back in time and which are compared to RISNv1, RG, RBB, and RC. To study the long-term trends, comparisons are made using averages over whole solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) using the IDV(1d) and IDV geomagnetic indices (for 1845 - 2013) fitted over the calibration interval using the various sunspot numbers and the phase of the solar cycle; ii) from the open solar flux (OSF) generated for 1845 - 2013 from four pairings of geomagnetic indices by Lockwood et al. (Ann. Geophys., 32, 383, 2014) and analysed using the OSF continuity model of Solanki, Schüssler, and Fligge (Nature, 408, 445, 2000) which employs a constant fractional OSF loss rate; iii) the same OSF data analysed using the OSF continuity model of Owens and Lockwood (J. Geophys. Res., 117, A04102, 2012) in which the fractional loss rate varies with the tilt of the heliospheric current sheet and hence with the phase of the solar cycle; iv) the occurrence frequency of low-latitude aurora for 1780 - 1980 from the survey of Legrand and Simon (Ann. Geophys., 5, 161, 1987). For all cases, RBB exceeds the test terrestrial series by an amount that increases as one goes back in time

    Tests of sunspot number sequences: 1. Using ionosonde data

    Get PDF
    More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies [foF2] had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of foF2 to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17-21. This test is carried out for the original composite of the Wolf/Zürich/International sunspot number [R], the new “backbone” group sunspot number [RBB] and the proposed “corrected sunspot number” [RC]. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - foF2 relationship. Over the interval studied here, R, RBB, and RC largely differ in their allowance for the “Waldmeier discontinuity” around 1945 (the correction factor for which for R, RBB and RC is, respectively, zero, effectively over 20 %, and explicitly 11.6 %). It is shown that for Solar Cycles 18-21, all three sunspot data sequences perform well, but that the fit residuals are lowest and most uniform for RBB. We here use foF2 for those UTs for which R, RBB, and RC all give correlations exceeding 0.99 for intervals both before and after the Waldmeier discontinuity. The error introduced by the Waldmeier discontinuity causes R to underestimate the fitted values based on the foF2 data for 1932-1945 but RBB overestimates them by almost the same factor, implying that the correction for the Waldmeier discontinuity inherent in RBB is too large by a factor of two. Fit residuals are smallest and most uniform for RC and the ionospheric data support the optimum discontinuity multiplicative correction factor derived from the independent Royal Greenwich Observatory (RGO) sunspot group data for the same interval

    A new calibrated sunspot group series since 1749: statistics of active day fractions

    Get PDF
    Although the sunspot-number series have existed since the mid-19th century, they are still the subject of intense debate, with the largest uncertainty being related to the "calibration" of the visual acuity of individual observers in the past. Daisy-chain regression methods are applied to inter-calibrate the observers which may lead to significant bias and error accumulation. Here we present a novel method to calibrate the visual acuity of the key observers to the reference data set of Royal Greenwich Observatory sunspot groups for the period 1900-1976, using the statistics of the active-day fraction. For each observer we independently evaluate their observational thresholds [S_S] defined such that the observer is assumed to miss all of the groups with an area smaller than S_S and report all the groups larger than S_S. Next, using a Monte-Carlo method we construct, from the reference data set, a correction matrix for each observer. The correction matrices are significantly non-linear and cannot be approximated by a linear regression or proportionality. We emphasize that corrections based on a linear proportionality between annually averaged data lead to serious biases and distortions of the data. The correction matrices are applied to the original sunspot group records for each day, and finally the composite corrected series is produced for the period since 1748. The corrected series displays secular minima around 1800 (Dalton minimum) and 1900 (Gleissberg minimum), as well as the Modern grand maximum of activity in the second half of the 20th century. The uniqueness of the grand maximum is confirmed for the last 250 years. It is shown that the adoption of a linear relationship between the data of Wolf and Wolfer results in grossly inflated group numbers in the 18th and 19th centuries in some reconstructions

    An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles

    Full text link
    The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo corrected. The original publication is available at http://www.springerlink.co

    Enhanced pressure drop, planar contraction flows and continuous spectrum models

    Get PDF
    This study addresses a rheological problem that has been outstanding now for the past few decades, raised by the experimental findings of Binding and Walters [1]. There, it was established experimentally that planar contraction flows for some Boger fluids could display enhanced pressure-drops above Newtonian flows, as was the case for their tubular counterparts. Nevertheless, flow-structures to achieve this result were reported to be markedly different, planar to circular. In this article, it is shown how predictive differential-viscoelastic solutions with continuum models can replicate these observations. Key to this success has been the derivation of a new definition for the third-invariant of the rate-of-deformation tensor in planar flows, mimicking that of the circular case [2], [3]. This provides a mechanism to successfully incorporate dissipation within planar flows, as performed earlier for tubular flows. Still, to reach the necessary large deformation-rates to achieve planar enhanced pressure-drops, and whilst maintaining steady flow-conditions, it has been found crucial to invoke a continuous-spectrum relaxation-time model [3]. The rheological power and flexibility of such a model is clearly demonstrated, over its counterpart Maxwellian single-averaged relaxation-time approximation; the latter transcending the boundaries of steady-to-unsteady flow to manifest equivalent levels of enhanced pressure-drops. Then, the role of extensional viscosity and first normal-stress difference, each play their part to achieve such planar enhanced pressure-drops. As a by-product, the distinctive planar ‘bulb-flow’ structures discovered by Binding and Walters [1], absent in tubular flows, are also predicted under the associated regime of high deformation-rates where enhanced pressure-drop arise
    corecore