857 research outputs found

    Dysmorphism of urinary red blood cells—Value in diagnosis

    Get PDF
    Dysmorphism of urinary red blood cells—Value in diagnosis. To aid investigation into the clinical problem of hematuria, assessment of abnormalities in the shape of red cells in the urine (dysmorphism) is gaining popularity in nephrology. However, there is uncertainty in the literature regarding both the number of red blood cells (RBC) in normal urine, as well as the quantification of dysmorphism. We have shown that in normal urine (N = 27) the number of RBC is less than 2,000/ml as assessed by scanning electron microscopy of filtered urine specimens from normal volunteers without known renal disease, which compared to less than 1,000/ml by centrifugation and phase contrast microscopy of the same specimen. To determine whether dysmorphism of urinary red blood cells was a significant predictor of glomerular disease we compared the number of dysmorphic cells in the urine of patients with biopsy proven glomerulonephritis (GN), before and immediately after renal biopsy. We also compared the number of dysmorphic cells in patients with glomerulonephritis to those with lower urinary tract bleeding. Renal biopsy caused significant dysmorhpic hematuria, indicating that dysmorphism suggests renal rather than glomerular bleeding. Although patients with GN had significantly more dysmorphic urinary RBC when compared to those with lower tract urinary bleeding, the overlap was such that one could only be confident of renal hematuria if they accounted for greater than 75% of the total number of RBC. Non renal hematuria is present if number of dysmorphic cells is less than 17% of total RBC. Thus dysmorphism of urinary RBC is a useful diagnostic tool, but only if strict criteria established for each laboratory are adhered to

    Toward scalable quantum computation with cavity QED systems

    Get PDF
    We propose a scheme for quantum computing using high-Q cavities in which the qubits are represented by single cavity modes restricted in the space spanned by the two lowest Fock states. We show that single qubit operations and universal multiple qubit gates can be implemented using atoms sequentially crossing the cavities.Comment: 14 pages, 8 figure

    Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report from the American Heart Association and American College of Cardiology

    Get PDF
    Risk assessment is a critical step in the current approach to primary prevention of atherosclerotic cardiovascular disease. Knowledge of the 10-year risk for atherosclerotic cardiovascular disease identifies patients in higher-risk groups who are likely to have greater net benefit and lower number needed to treat for both statins and antihypertensive therapy. Current US prevention guidelines for blood pressure and cholesterol management recommend use of the pooled cohort equations to start a process of shared decision-making between clinicians and patients in primary prevention. The pooled cohort equations have been widely validated and are broadly useful for the general US clinical population. But, they may systematically underestimate risk in patients from certain racial/ethnic groups, those with lower socioeconomic status or with chronic inflammatory diseases, and overestimate risk in patients with higher socioeconomic status or who have been closely engaged with preventive healthcare services. If uncertainty remains for patients at borderline or intermediate risk, or if the patient is undecided after a patient-clinician discussion with consideration of risk enhancing factors (eg, family history), additional testing with measurement of coronary artery calcium can be useful to reclassify risk estimates and improve selection of patients for use or avoidance of statin therapy. This special report summarizes the rationale and evidence base for quantitative risk assessment, reviews strengths and limitations of existing risk scores, discusses approaches for refining individual risk estimates for patients, and provides practical advice regarding implementation of risk assessment and decision-making strategies in clinical practice

    Processing of ultrafine-size particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR

    Polarization quantum properties in type-II Optical Parametric Oscillator below threshold

    Get PDF
    We study the far field spatial distribution of the quantum fluctuations in the transverse profile of the output light beam generated by a type II Optical Parametric Oscillator below threshold, including the effects of transverse walk-off. We study how quadrature field correlations depend on the polarization. We find spatial EPR entanglement in quadrature-polarization components: For the far field points not affected by walk-off there is almost complete noise suppression in the proper quadratures difference of any orthogonal polarization components. We show the entanglement of the state of symmetric intense, or macroscopic, spatial light modes. We also investigate nonclassical polarization properties in terms of the Stokes operators. We find perfect correlations in all Stokes parameters measured in opposite far field points in the direction orthogonal to the walk-off, while locally the field is unpolarized and we find no polarization squeezing.Comment: 16 pages, 18 figure

    Direct measurement of optical quasidistribution functions: multimode theory and homodyne tests of Bell's inequalities

    Full text link
    We develop a multimode theory of direct homodyne measurements of quantum optical quasidistribution functions. We demonstrate that unbalanced homodyning with appropriately shaped auxiliary coherent fields allows one to sample point-by-point different phase space representations of the electromagnetic field. Our analysis includes practical factors that are likely to affect the outcome of a realistic experiment, such as non-unit detection efficiency, imperfect mode matching, and dark counts. We apply the developed theory to discuss feasibility of observing a loophole-free violation of Bell's inequalities by measuring joint two-mode quasidistribution functions under locality conditions by photon counting. We determine the range of parameters of the experimental setup that enable violation of Bell's inequalities for two states exhibiting entanglement in the Fock basis: a one-photon Fock state divided by a 50:50 beam splitter, and a two-mode squeezed vacuum state produced in the process of non-degenerate parametric down-conversion.Comment: 18 pages, 7 figure
    • …
    corecore