1,786 research outputs found

    Economic freedom and cross-border acquisitions from emerging markets into developed economies

    Get PDF
    Extending the home base perspective by considering investors' parent countries, this study examines the effect of economic freedom (EF) on emerging-market enterprises' (EMEs) overseas acquisition completion in developed countries. Using a large data set of 5,174 cross-border acquisition deals from ten major emerging markets (EMs) during 1985–2011, we find that (1) the probability of deal completion is positively associated with the levels of EF of the acquirers' countries, the acquirers' parent and the target; (2) the EF of the countries of acquirers' parents has a substitutive effect on that of the acquirers' countries; (3) the difference of EF between the targets' countries and the countries of acquirers' parents negatively influences deal completion; and (4) the difference of EF between the targets' countries and the acquirers' countries negatively influences deal completion. These findings have important theoretical implications for international business scholars, as well as practical implications for managers and for policymakers of EMEs that are active in foreign direct investment

    Structural Ordering and Symmetry Breaking in Cd_2Re_2O_7

    Full text link
    Single crystal X-ray diffraction measurements have been carried out on Cd_2Re_2O_7 near and below the phase transition it exhibits at Tc' ~195 K. Cd_2Re_2O_7 was recently discovered as the first, and to date only, superconductor with the cubic pyrochlore structure. Superlattice Bragg peaks show an apparently continuous structural transition at Tc', however the order parameter displays anomalously slow growth to ~Tc'/10, and resolution limited critical-like scattering is seen above Tc'. High resolution measurements show the high temperature cubic Bragg peaks to split on entering the low temperature phase, indicating a (likely tetragonal) lowering of symmetry below Tc'.Comment: 4 pages, 4 figure

    Search for Top Quark FCNC Couplings in Z' Models at the LHC and CLIC

    Full text link
    The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z' at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z' mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with sqrt{s_{pp}}=7(14) TeV, respectively. For the resonance production of sequential Z' boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section 27.96(0.91) fb at sqrt{s_{e^{+}e^{-}}}=1(3) TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z' models. It is shown that the results benefit from the flavor tagging.Comment: 20 pages, 17 figures, 6 table

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    Tidal Dwarf Galaxies at Intermediate Redshifts

    Full text link
    We present the first attempt at measuring the production rate of tidal dwarf galaxies (TDGs) and estimating their contribution to the overall dwarf population. Using HST/ACS deep imaging data from GOODS and GEMS surveys in conjunction with photometric redshifts from COMBO-17 survey, we performed a morphological analysis for a sample of merging/interacting galaxies in the Extended Chandra Deep Field South and identified tidal dwarf candidates in the rest-frame optical bands. We estimated a production rate about 1.4 {\times} 10^{-5} per Gyr per comoving volume for long-lived TDGs with stellar mass 3 {\times} 10^{8-9} solar mass at 0.5<z<1.1. Together with galaxy merger rates and TDG survival rate from the literature, our results suggest that only a marginal fraction (less than 10%) of dwarf galaxies in the local universe could be tidally-originated. TDGs in our sample are on average bluer than their host galaxies in the optical. Stellar population modelling of optical to near-infrared spectral energy distributions (SEDs) for two TDGs favors a burst component with age 400/200 Myr and stellar mass 40%/26% of the total, indicating that a young stellar population newly formed in TDGs. This is consistent with the episodic star formation histories found for nearby TDGs.Comment: 9 pages, 5 figures, Accepted for publication in Astrophysics & Space Scienc

    Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems

    Get PDF
    We present a method for measuring single spins embedded in a solid by probing two electron systems with a single electron transistor (SET). Restrictions imposed by the Pauli Principle on allowed two electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and small textual changes. Submitted to Phys. Rev.

    Stepwise formation of heteronuclear coordination networks based on quadruple-bonded dimolybdenum units containing formamidinate ligands

    Get PDF
    Reactions of [Mo2(4-pyf)4] (4-Hpyf = 4-pyridylformamidine) with HgX2 (X = Cl, Br and I) afforded the first 2D and 3D heteronuclear coordination networks based on quadruple-bonded dimolybdenum units

    HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    Full text link
    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ\Xi and Λ\Lambda hyperon decays with a sensitivity of 10410^{-4}. Intense charged secondary beams were produced by 800 GeV/c protons and momentum-selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in twelve months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.

    Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well

    Full text link
    We study photoluminescence (PL) of charged excitons (XX^-) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all XX^- states strongly depends on the separation δ\delta of electron and hole layers. The most sensitive is the ``bright'' singlet, whose binding energy decreases quickly with increasing δ\delta even at relatively small B. As a result, the value of B at which the singlet--triplet crossing occurs in the XX^- spectrum also depends on δ\delta and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for δ=0.5\delta=0.5 nm. Since the critical values of δ\delta at which different XX^- states unbind are surprisingly small compared to the well width, the observation of strongly bound XX^- states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of XX^- recombination

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure
    corecore