76 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Overview of the JET results in support to ITER

    Get PDF

    Detached-Eddy Simulation of Slat and Flap Aerodynamics for a High-Lift Wing

    Get PDF
    Three-dimensional multi-element wings are simulated to investigate slat and flap aerodynamics using Detached-Eddy Simulation. The computations are performed by solving the Navier-Stokes equations on unstructured grids. All of the computed cases include the main wing with a half-span flap deflected to 39 degrees and a three-quarter-span slat deflected to 6 degrees. Computations of the model, which simulates a landing configuration at 10 degrees angle of attack and a chord-based Reynolds number of 3.7 million, are validated with surface pressure measurements acquired at the NASA Ames 7- by 10-Foot Wind Tunnel. The results increase the computational knowledge of how to accurately model the flow physics of a multi-element wing with three-dimensional flow by using Detached-Eddy Simulation

    An Axiomatic Characterization of Continuous-Outcome Market Makers

    No full text
    Most existing market maker mechanisms for prediction markets are designed for events with a finite number of outcomes. All known attempts on designing market makers for forecasting continuous-outcome events resulted in mechanisms with undesirable properties. In this paper, we take an axiomatic approach to study whether it is possible for continuous-outcome market makers to satisfy certain desirable properties simultaneously. We define a general class of continuous-outcome market makers, which allows traders to express their information on any continuous subspace of their choice. We characterize desirable properties of these market makers using formal axioms. Our main result is an impossibility theorem showing that if a market maker offers binary-payoff contracts, either the market maker has unbounded worst case loss or the contract prices will stop being responsive, making future trades no longer profitable. In addition, we analyze a mechanism that does not belong to our framework. This mechanism has a worst case loss linear in the number of submitted orders, but encourages some undesirable strategic behavior

    Gaming Dynamic Parimutuel Markets

    Get PDF
    Abstract. We study the strategic behavior of risk-neutral non-myopic agents in Dynamic Parimutuel Markets (DPM). In a DPM, agents buy or sell shares of contracts, whose future payoff in a particular state depends on aggregated trades of all agents. A forward-looking agent hence takes into consideration of possible future trades of other agents when making its trading decision. In this paper, we analyze non-myopic strategies in a two-outcome DPM under a simple model of incomplete information and examine whether an agent will truthfully reveal its information in the market. Specifically, we first characterize a single agent’s optimal trading strategy given the payoff uncertainty. Then, we use a two-player game to examine whether an agent will truthfully reveal its information when it only participates in the market once. We prove that truthful betting is a Nash equilibrium of the two-stage game in our simple setting for uniform initial market probabilities. However, we show that there exists some initial market probabilities at which the first player has incentives to mislead the other agent in the two-stage game. Finally, we briefly discuss when an agent can participate more than once in the market whether it will truthfully reveal its information at its first play in a three-stage game. We find that in some occasions truthful betting is not a Nash equilibrium of the three-stage game even for uniform initial market probabilities.
    corecore