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Gaming Dynamic Parimutuel Markets

Qianya Lin1,⋆ and Yiling Chen2

1 City University of Hong Kong, Hong Kong SAR
2 Harvard University, Cambridge, MA, USA

Abstract. We study the strategic behavior of risk-neutral non-myopic
agents in Dynamic Parimutuel Markets (DPM). In a DPM, agents buy or
sell shares of contracts, whose future payoff in a particular state depends
on aggregated trades of all agents. A forward-looking agent hence takes
into consideration of possible future trades of other agents when making
its trading decision. In this paper, we analyze non-myopic strategies in a
two-outcome DPM under a simple model of incomplete information and
examine whether an agent will truthfully reveal its information in the
market. Specifically, we first characterize a single agent’s optimal trading
strategy given the payoff uncertainty. Then, we use a two-player game
to examine whether an agent will truthfully reveal its information when
it only participates in the market once. We prove that truthful betting
is a Nash equilibrium of the two-stage game in our simple setting for
uniform initial market probabilities. However, we show that there exists
some initial market probabilities at which the first player has incentives
to mislead the other agent in the two-stage game. Finally, we briefly
discuss when an agent can participate more than once in the market
whether it will truthfully reveal its information at its first play in a
three-stage game. We find that in some occasions truthful betting is
not a Nash equilibrium of the three-stage game even for uniform initial
market probabilities.

1 Introduction

Prediction markets are used to aggregate dispersed information about uncertain
events of interest and have provided accurate forecasts of event outcomes, often
outperforming other forecasting methods, in many real-world domains [1–8]. To
achieve its information aggregation goal, a prediction market for an uncertain
event offers contracts whose future payoff is tied to the event outcome. For
example, a contract that pays off $1 per share if there are more than 6,000
H1N1 flu cases confirmed in U.S. by August 30, 2009 and $0 otherwise can be
traded to predict the likelihood of the specified activity level of H1N1 flu.

Most market mechanisms used by prediction markets, including continuous

double auctions (CDA) and market scoring rules (MSR) [9, 10], trade contracts
whose payoff in each state is fixed, as in the above example. Contracts in dynamic

parimutuel markets (DPM) [11, 12], however, have variable payoff that depends
on the aggregated trades of all market participants. The payoff uncertainty makes
DPM a mechanism that admits more speculation and strategic play.

⋆ Part of this work was done while Qianya Lin was visiting Harvard University.
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As the goal of prediction markets is to aggregate information, it is important
to understand whether and how participants reveal their information in the mar-
ket. In this paper, we study the strategic behavior of risk-neutrual non-myopic
agents in a two-outcome DPM under a simple setting of incomplete information,
with the intent to understand how forward-looking agents reveal their informa-
tion in DPM and whether they will reveal their information truthfully. We first
characterize a single agent’s optimal trading strategy given payoff uncertainty.
Then, we consider a two-player two-stage dynamic game where each player only
participates once in DPM, to examine whether the first player has incentives to
misreport its information to mislead the second player and obtain higher profit
even if it can only play once. We prove that truthful betting is a Nash equilib-
rium of the two-stage game for uniform initial market probabilities. We show
that there exists some initial market probabilities at which the first player has
incentives to mislead the other agent in the two-stage game. Finally, we discuss
a three-stage game in which an agent can participate more than once. we find
that the truthful betting is not a Nash equilibrium of the three-stage game in
some occasions even for uniform initial market probabilities.
Related Work. Chen et al. [13] provide a specific example of a two-player two-
stage game in DPM where the second player is perfectly informed and show that
the first player may sometimes choose not to trade. Our work does not assume
perfectly informed agents and we characterize non-myopic strategies in more
general settings. The example of Chen et al. is a special case of our results for
the two-player two-stage game. Nikolova and Sami [14] use a projection game
to study DPM. They show that a rational agent will never hold shares of both
outcomes in a two-outcome DPM when short sales are not allowed. This is
consistent with our characterization of a single agent’s optimal strategy given
payoff uncertainty. Bu et al. [15] study the strategies of a myopic agent who
believes that the contract payoff in the future is the same as the payoff if the
market closes right after the agent’s trade in a DPM. Our work focuses on
forward-looking agents who take into consideration of the payoff uncertainty
when making their trading decisions.

Some theoretical attempts have been made to characterize non-myopic strate-
gies in other markets, including logarithmic market scoring rule (LMSR) [13,
16, 17], financial markets (i.e. CDA) [18–20], and parimutuel markets [21]. In
all these markets, agents may have incentives to misreport their information.
Ostrovsky [22] provides a separability condition that contracts need to satisfy
to guarantee market convergence to full information aggregation at a perfect
Bayesian equilibrium in LMSR and CDA.

2 Dynamic Parimutuel Markets

A dynamic parimutuel market (DPM) [11, 12] is a dynamic-cost variant of a
parimutuel market. Suppose an uncertain event of interest has n mutually ex-
clusive outcomes. Let Ω denote the outcome space. A DPM offers n contracts,
each corresponding to an outcome. As in a parimutuel market, traders who wager
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on the true outcome split the total pool of money at the end of the market. How-
ever, the price of a single share varies dynamically according to a price function,
hence incentivizing traders to reveal their information earlier.

DPM operates as a market maker. Let qω be the total number of shares of
contract ω that have been purchased by all traders. We use q to denote the
vector of outstanding shares for all contracts. The DPM market maker keeps a
cost function, C(q) =

√
∑

ω∈Ω q
2
ω , that captures total money wagered in the

market, and an instantaneous price function for contract ω, pω = qω√
P

ψ∈Ω q
2

ψ

.

A trader who buys contracts and changes the outstanding shares from q to q̃

pays the market maker C(q̃) − C(q). The market probability on outcome ω

is πω =
q2ω

P

ψ∈Ω q
2

ψ

. In DPM, market price of a contract does not represent the

market probability of the corresponding state. Instead, πω = p2
ω.

If outcome ω is realized, each share of contract ω gets an equal share of

the total market capitalization. Its payoff is oω =

q

P

ψ∈Ω (qf
ψ

)2

q
f
ω

, where qfω is the

outstanding shares of contract ω at the end of the market. All other contracts
have zero payoff. As the value of qf is not known before the market closes, oω
is not fixed while the market is open. The relation of the final market price,
final market probability, and the contract payoff when outcome ω is realized,
is oω = 1

p
f
ω

= 1√
π
f
ω

, where pfω and πfω denote the last market price and market

probability before the market closes.
As a market maker mechanism, DPM offers infinite liquidity. Because the

price function is not defined when q = 0, the market maker subsidizes the market
by starting the market with some positive shares. The subsidy turns DPM into
a positive-sum game and can circumvent the no-trade theorem [23] for zero-sum
games. Tech Buzz Game [12] used DPM as its market mechanism and market
probabilities in the game have been shown to offer informative forecasts for the
underlying events [24].

3 Our Setting

We consider a simple incomplete information setting for a DPM in this paper.
There is a single event whose outcome space contains two discrete mutually
exclusive states Ω = {Y,N}. The eventual event outcome is picked by Nature
with prior probability P(Y ) = P(N) = 1

2 . The DPM offers two contracts, each
corresponding to one outcome. There are two players in the market. Each player i
receives a piece of private signal ci ∈ {yi, ni}. The signal is independently drawn
by Nature conditional on the true state. In other words, signals are conditionally
independent, P(ci, cj|ω) = P(ci|ω)P(cj |ω). The prior probabilities and the signal
distributions are common knowledge to all players.

We further assume that player’s signals are symmetric such that P(yi|Y ) =
P(ni|N) for all i. With this, we define the signal quality of player i as θi =
P(yi|Y ) = P(ni|N). The signal quality θi captures the likelihood for agent i
to receive a “correct” signal. Without loss of generality, we assume θi ∈ (1

2 , 1].
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The above conditions, together with conditional independence of signals, imply
that for two players i and j we have P(Y |ci, yj) > P(Y |ci, nj), P(N |ci, nj) >
P(N |ci, yj), P(yi|yj) > P(ni|yj), and P(ni|nj) > P(yi|nj) for ci ∈ {yi, ni}.

Short sell is not allowed in the market. Agents are risk neutral and participate
in the market sequentially. We also assume that they do not possess any shares
at the beginning of the market and have unlimited wealth.

4 Optimal Trading Strategy of A Single Agent

We first consider a single agent’s optimal trading strategy given the payoff uncer-
tainty in DPM. We assume that the agent only trades once in DPM. Let P(ω, s)
be the agent’s subjective probability that the event outcome will be ω and the
set of information available to the last trader is s. The market probability at the
end of the market will reflect all available information. Hence the final price for
contract ω when s is available is πfω(s) = P(ω|s).

The agent compares the current price of a contract, pω, with its expected
future payoff. Note that the future payoff of contract ω in state ω only relates to
the final market probability πfω and does not relate to the process of reaching it.

The expected future payoff of contract ω is ϕω =
∑

s
P(ω,s)√
π
f
ω(s)

=
∑

s
P(ω,s)√
P(ω|s)

=
∑

s P(s)
√

P(ω|s). We have the following lemma.

Lemma 4.1.
∑

ω ϕ
2
ω ≤ 1.

Suppose the agent purchases ∆q and changes the outstanding shares from
q to q̃ = q + ∆q. The market prices before and after the trade are p and p̃

respectively. Theorem 4.2 characterizes the agent’s optimal purchases when it
attempts to maximize its expected profit.
Theorem 4.2. In a two-outcome DPM, if a risk-neutral agent maximizes its

expected profit by purchasing ∆q ≥ 0, the following conditions must satisfy:

1. For any contract ω, if pω < ϕω, then ∆qω > 0 and p̃ω = ϕω.
2. For any contract ω, if pω > ϕω, then p̃ω ≥ ϕω and when the inequality is

strict, ∆qω = 0.
3. For any contract ω, if pω > ϕω, p̃ω = ϕω, and ∆qω > 0, there exists an

equivalent ∆q′ ≥ 0 with ∆q′ω = 0 that satisfies conditions 1 and 2 and have

the same expected profit as ∆q.
4. If pY > ϕY and pN > ϕN , ∆q = 0.

Theorem 4.2 means that, in a two-outcome DPM, when
∑

ω ϕ
2
ω < 1, the

optimal strategy for an agent is to buy shares of the contract whose current
price is lower than its expected payoff and drive its price up to its expected
payoff. When

∑

ω ϕ
2
ω = 1, it’s possible to achieve the desired market prices by

purchasing both contracts, but this is equivalent, in terms of expected profit, to
the strategy that only purchases the contract whose current price is lower than
its expected payoff. Thus, the optimal strategy of an agent is to buy shares for
the contract whose current price is too low. We now give the optimal shares
that an agent would purchase and its optimal expected profit in the following
theorem.
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Theorem 4.3. In a two-outcome market, when qω√
q2ω+q2ω̄

< ϕω ≤ 1, a trader

with expected payoff ϕω for contract ω will purchase ∆q∗ω = ϕω√
1−ϕ2

ω

qω̄ − qω

to maximize his expected profit, where qω is the current outstanding shares for

outcome ω in the market, and qω̄ is the outstanding shares for the other outcome.

His optimal expected profit is U(∆q∗ω) =
√

q2ω + q2ω̄ − qωϕω − qω̄
√

1 − ϕ2
ω. When

qω√
q2ω+q2ω̄

> ϕω and qω̄√
q2ω+q2ω̄

> ϕω̄, the trader does not purchase any contract.

Because of the payoff uncertainty, an agent who only trades once in DPM will
not change the market price to its posterior probability as in CDA or MSR, but
will change the market price to (ϕY ,

√

1 − ϕ2
Y ) if purchasing contract Y and to

(
√

1 − ϕ2
N , ϕN ) if purchasing contract N . The corresponding market probabili-

ties are (ϕ2
Y , 1−ϕ2

Y ) and (1−ϕ2
N , ϕ

2
N ) respectively. It is possible that the agent’s

optimal strategy is to not trade in the market. This happens when the current
price qω√

q2ω+q2ω̄
is greater than ϕω for all ω.

5 Two-Player Games

When analyzing a single agent’s optimal strategy in the previous section, we
do not consider the possibility that the agent’s behavior may affect the set of
information available to later traders. In DPM, as agents can infer information
of other agents from their trading decisions, an agent who plays earlier in the
market may mislead those who play later and affects the information sets of the
later traders. In this section, we use two-player games to study this issue.

5.1 Two-Player Two-Stage Game

We first consider a two-player two-stage game, the Alice-Bob game, to examine
whether an agent will try to affect the expected contract payoff by misreporting
its own information. In the Alice-Bob game, Alice and Bob are the only players
in the market. Each of them can trade only once. Alice plays first, followed by
Bob. We are interested in whether there exists an equilibrium at which Alice fully
reveals her information in the first stage if she trades and Bob infers Alice’s infor-
mation and acts based on both pieces of information in the second stage. In par-
ticular, at the equilibrium, when having signal cA ∈ {yA, nA}, Alice believes that
ϕω(cA) =

∑

cB
P(cB|cA)

√

P(ω|cA, cB) and plays her optimal strategy according

to Theorem 4.3. Bob with signal cB believes that ϕω(cA, cB) =
√

P(ω|cA, cB)

if Alice trades in the first stage and ϕω(cB) =
√

P(ω|cB ,Alice doesn’t trade) if
Alice doesn’t trade, and plays his optimal strategy according to Theorem 4.3.
We call such an equilibrium a truthful betting equilibrium. Note that the truthful
betting equilibrium does not guarantee full information aggregation at the end
of the game, because if Alice does not trade her information is not fully revealed.
Since we are interested in the strategic behavior of agents, we also assume that
ϕω(yA) 6= ϕω(nA) to rule out degenerated cases.
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In the rest of this section, we show that truthful betting equilibrium exists
when the initial market probability is uniform, but does not exist with some
other initial market probabilities.

Truthful Betting Equilibrium We assume that the market starts with uni-
form initial market probability, i.e. πY = πN = 1

2 . This means that the initial
market prices are pY = pN = 1√

2
. As signals are symmetric, we have the follow-

ing lemma.

Lemma 5.1. Suppose all information is revealed after Bob’s play. Alice’s ex-

pected payoff for contract Y when she has signal yA equals her expected payoff for

contract N when she has signal nA. That is, ϕY (yA) = ϕN (nA), where ϕY (yA) =
∑

cB
P(cB|yA)

√

P(Y |cB, yA) and ϕN (nA) =
∑

cB
P(cB|nA)

√

P(N |cB, nA).

We use ϕ to denote both ϕY (yA) and ϕN (nA). Theorem 5.1 characterizes the
truthful betting equilibrium for the game with uniform initial market probability.

Theorem 5.2. In a two-outcome DPM with uniform initial market probability,

truthful betting is a Bayesian Nash equilibrium for the Alice-Bob game. At the

equilibrium, Alice does not trade if ϕ ≤ 1√
2
. If ϕ > 1√

2
, Alice purchases contract

Y and changes the price for Y to ϕ if she has yA, and purchases contract N

and changes the price for N to ϕ if she has nA. If Alice trades, Bob infers her

signal and changes the market probability to the posterior probability conditional

on both signals. If Alice does not trade, Bob changes the market probability to

the posterior probability conditional on his own signal.

Fig. 1. Signal Qualities and
Alice’s Expected Payoff

Figure 1 plots the iso-value lines of ϕ as a
function of θA and θB . The leftmost curve is
ϕ(θA, θB) = 1√

2
. The value of ϕ increases as

the curve moves toward the right. As the initial
market price is 1√

2
for both outcomes, the curve

ϕ(θA, θB) = 1√
2

gives the boundary that at the

equilibrium Alice trades in the first stage. The
shaded area gives the range of signal qualities
that Alice is better off not trading at the equi-
librium. When θB = 1, that is Bob is perfectly
informed, Alice won’t trade if her signal quality
θA is less than 1√

2
. This is consistent with the

example given by Chen et al. [13].

Non-existence of the Truthful Betting Equilibrium In Alice-Bob game,
truthful betting is not a Nash equilibrium for arbitrary initial market probability.

Theorem 5.3. In a two-outcome DPM, there exists some initial market proba-

bilities where truthful betting is not a Nash equilibrium for the Alice-Bob game.
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The intuition is that if the initial market price for one contract is very low
that Alice will purchase the the contract no matter which signal she gets, Alice
may pretend to have a different signal by purchasing less when she should buy
more if being truthful. If Bob is mislead, this increases the expected payoff per
share of the contract and hence can increase Alice’s expected total profit even if
she purchases less. This is very different from other market mechanisms. In both
CDA and MSR, if a player only plays once in the market, disregard of whether
there are other players behind it, the player will always play truthfully.

5.2 Two-Player Three-Stage Game

In the Alice-Bob game, Alice may not play truthfully in order to mislead Bob
and achieve a higher expected payoff per share, but she does not directly make
profits from Bob’s uninformed trades. Now we consider a three-stage game, the
Alice-Bob-Alice game, where Alice can play a second time after Bob’s play.
Truthful betting equilibrium in this game means that both players play their
truthful betting equilibrium strategies of the Alice-Bob game in the first two
stages and Alice does nothing in the third stage. Clearly, if Alice has incentives
to deviate from truthful betting in the Alice-Bob game, she will also deviate in
the Alice-Bob-Alice game, because playing a second time allows Alice to gain
more profit by capitalizing on Bob’s uninformed trades. Even for settings where
truthful betting is a Bayesian Nash equilibrium for the Alice-Bob game, a truth-
ful betting equilibrium may not exist for the Alice-Bob-Alice game. For example,
with uniform initial market probability, if θA = 0.6, θB = 0.8 and Alice has yA,
Alice is better off pretending to have nA given Bob believes that she plays truth-
fully. In contrast, in LMSR when agents have conditionally independent signals,
truthful betting is the unique perfect Bayesian equilibrium [13, 17].

6 Conclusion

Using a simple setting of incomplete information, we show that DPM admits
more gaming than several other prediction market mechanisms due to its payoff
uncertainty. We show that even when a player only participates once in the
market, e.g. in an Alice-Bob game, it still has incentives to bluff and pretend to
have a different signal. The bluffing behavior exists more generally when traders
participate the market more than once.
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Appendix

A Proofs

A.1 Proof of Lemma 4.1

∑

ω ϕ
2
ω =

∑

ω

(

∑

s P(s)
√

P(ω|s)
)2

≤ ∑

ω

∑

s P(s)P(ω|s) = 1. The inequality is

due to Jensen’s inequality and the fact that the function f(x) = x2 is convex.

A.2 Proof of Theorem 4.2

According to Lemma 4.1,
∑

ω ϕ
2
ω ≤ 1. Because

∑

ω p
2
ω = 1, if there exists some

state such that pω < ϕω, there must exist some other state where the inequality
is reversed.

We first prove that after the agent’s purchase, for any outcome ω, it must be
p̃ω ≥ ϕω. Suppose the contrary, p̃ω < ϕω. The agent can always purchase more
shares for contract ω to increase his expected profit because the expected payoff
exceeds the cost of purchase. This contradicts that purchasing ∆q maximizes
the expected profit of the agent.

Because the price of contract ω increases with qω and decreases with qψ
for ψ 6= ω. If pω < ϕω and p̃ω ≥ ϕω , it must be that ∆qω > 0. Moreover,
when ∆qω > 0, it can not be that p̃ω > ϕω because the trader can buy less
and increase his expected profit since the cost of purchasing is higher than the
expected payoff. Thus, if pω < ϕω, we must have ∆qω > 0 and p̃ω = ϕω . This
proves condition 1.

When pω > ϕω and p̃ω > ϕω, ∆qω can not be positive, because if it is, by
decreasing it the agent can get higher expected profit. This proves condition 2.

To prove condition 3, without loss of generality, assume that pY > ϕY ,
p̃Y = ϕY , and ∆qY > 0. Because pY > ϕY , pN < ϕN . According to condition 1,
we have p̃N = ϕN . Thus, p̃2

Y + p̃2
N = ϕ2

Y + ϕ2
N=1. Thus, starting with ∆q, we

can simultaneously reduce purchases of both contracts while keeping the price
p̃ unchanged, until the holding for contract Y drops to 0. This doesn’t change
the expected profit of the trader since the sell price equals the expected payoff.

When the price is higher than the expected payoff for both contracts, it is
clearly optimal for the agent to not buy any contract as buying will result in
loss in expectation. This gives condition 4.

A.3 Proof of Theorem 4.3

As ϕω > qω
(qω)2+(qω̄)2 , according to Theorem 4.2, the trader will purchase ∆q∗ω

shares of contract ω and change the market price of ω to ϕω, i.e.
qω+∆q∗ω√

(qω+∆q∗ω)2+q2ω̄
=

ϕω. Solving this equation, we have ∆q∗ω = ϕω√
1−ϕ2

ω

qω̄ − qω. The trader’s ex-

pected utility is U(∆q∗ω) = ϕω∆q
∗
ω −

√

(qω +∆q∗ω)2 + q2ω̄ +
√

q2ω + q2ω̄ for pur-
chasing ∆q∗ω shares of contract ω. Plugging in the expression of ∆q∗ω, we get

U(∆q∗ω) =
√

q2ω + q2ω̄ − qωϕω − qω̄
√

1 − ϕ2
ω.
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A.4 Proof of Lemma 5.1

When Alice has yA,

ϕY (yA) =
∑

cB

P(cB , Y |yA)
1

√

π
f
Y

=
∑

cB

P(cB |yA)P(Y |cB, yA)
1

√

P(Y |cB, yA)

=
∑

cB

P(cB |yA)
√

P(Y |cB, yA)

=
√

P(yB|Y )P(yA|Y ) + P(yB|N)P(yA|N)
√

P(yB|Y )P(yA|Y )

+
√

P(nB |Y )P(yA|Y ) + P(nB |N)P(yA|N)
√

P(nB|Y )P(yA|Y )

=
√

θAθB + (1 − θA)(1 − θB)
√

θAθB

+
√

θA(1 − θB) + (1 − θA)θB
√

θA(1 − θB).

When Alice has nA,

ϕN (nA) =
∑

cB

P(cB, N |nA)
1

√

π
f
N

=
∑

cB

P(cB|nA)P(N |cB, nA)
1

√

P(N |cB , nA)

=
∑

cB

P(cB|nA)
√

P(N |cB, nA)

=
√

P(yB|N)P(nA|N) + P(yB|Y )P(nA|Y )
√

P(yB|N)P(nA|N)

+
√

P(nB|N)P(nA|N) + P(nB|Y )P(nA|Y )
√

P(nB|N)P(nA|N)

=
√

θA(1 − θB) + (1 − θA)θB
√

θA(1 − θB)

+
√

θAθB + (1 − θA)(1 − θB)
√

θAθB.

In conclusion, we have ϕY (yA)=ϕN (nA).

A.5 Proof of Theorem 5.2

If Alice gets yA, her expected payoff of contracts Y and N are ϕY (yA) =
∑

cB
P(cB|yA)

√

P(Y |cB, yA) and ϕN (yA) =
∑

cB
P(cB|yA)

√

P(N |cB, yA) re-
spectively.

ϕY (yA) − ϕN (yA) =
√

P(yB|yA)(
√

P(yB|Y )P(yA|Y ) −
√

P(yB|N)P(yA|N))

+
√

P(nB|yA)(
√

P(nB|Y )P(yA|Y ) −
√

P(nB|N)P(yA|N))

=
√

P(yB|yA)(
√

θAθB −
√

(1 − θA)(1 − θB))

+
√

P(nB|yA)(
√

θA(1 − θB) −
√

(1 − θA)θB).

As signals are symmetric, P(yB|yA) > P(nB|yA) and θAθB > θA(1 − θB), (1 −
θA)(1 − θB) < (1 − θA)θB. We have ϕY (yA) > ϕN (yA).
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If Alice gets nA, her expected payoff of contracts Y and N are ϕY (nA) =
∑

cB
P(cB|nA)

√

P(Y |cB, nA) and ϕN (nA) =
∑

cB
P(cB|nA)

√

P(N |cB, nA) re-
spectively.

ϕN (nA) − ϕY (nA) =
√

P(yB|nA)(
√

P(yB|N)P(nA|N) −
√

P(yB|Y )P(nA|Y ))

+
√

P(nB |nA)(
√

P(nB|N)P(nA|N) −
√

P(nB|Y )P(nA|Y ))

=
√

P(yB|nA)(
√

(1 − θB)θA −
√

(1 − θA)θB)

+
√

P(nB |nA)(
√

θAθB −
√

(1 − θA)(1 − θB)).

Similarly, ϕN (nA) > ϕY (nA).
According to Lemma 5.1, ϕY (yA) = ϕN (nA) = ϕ. If the market starts with

uniform initial probability, pY = pN = 1√
2
. If ϕ > 1√

2
, we know that ϕY (yA) >

pY , ϕN (yA) < pN , ϕN (nA) > pN , and ϕY (nA) < pY because of Lemma 4.1.
Alice will purchase Y if she has yA and purchase N if she has nA and change the
market price for the corresponding contract to ϕ if she plays truthfully, according
to Theorems 4.2 and 4.3. Without loss of generality, assume that Alice gets yA.

We show that Alice won’t pretend to have nA when she get yA if ϕ > 1√
2
. If

she attempts to mislead Bob by acting as if she has nA, she will buy on N until
the market price of N reaches ϕN (nA), her actual expected payoff by playing
this bluffing strategy is:

ϕBN =
∑

cB

P(N, cB |yA)
1

√

P(N |nA, cB)
<

∑

cB

P(N, cB |yA)
1

√

P(N |yA, cB)
= ϕN (yA).

The inequality comes from P(N |nA, cB) > P(N |yA, cB). Comparing the ex-
pected final payoff, ϕBN < ϕN (yA) < pN . This suggests that if Alice bluffs her
expected final payoff per share is lower than her purchasing price. Alice is worse
off bluffing.

Next, we show that Alice does not want to deviate to change the market
price to any other values if ϕ > 1√

2
. At the equilibrium, Bob’s belief is that

Alice gets yA if she buys contract Y and gets nA if she buys contract N. If Alice
buys contract N and changes its price to something different from ϕN (nA), her
expected payoff is still ϕBN which is lower than her purchasing price. If Alice buys
contract Y, her expected payoff is ϕY (yA) and truthful betting is her optimal
strategy.

Finally, we prove that when ϕ ≤ 1√
2
, Alice does not trade not matter what

signal she has and Bob will change the final market probability to the posterior
probability given his own signal. If Alice does not trade, Bob believes that she has
yA or nA each with probability 0.5. Thus, Bob’s best response is to change the
market probability to his posterior probability conditional only on his signal.
Alice does not want to deviate to trade. This is because, if she has yA and
purchases Y , Bob will then believe that she has yA, and the expected payoff
of Y for Alice becomes ϕY (yA) which is lower than Alice’s purchasing price. If
she has yA and purchases N , Bob will then believe that she has nA, and the
expected payoff of N for Alice becomes ϕN (nA) which is also less than Alice’s
purchasing price.
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A.6 Proof of Theorem 5.3

For non-uniform initial market probability, we prove by giving an example where
truthful betting is not the best response for Alice. When the initial market price
for Y is low such that ϕY (yA) > ϕY (nA) > pY , Alice will buy contract Y no
matter which signal she gets if she plays truthfully, although the amount that
she will buy when having signal nA is less than the amount that she will buy
when having signal yA. Assume pY = 1

3 , θA = 3
5 , and θB = 2

5 , which suggest
ϕY (yA) > ϕY (nA) > 1

3 . The difference of Alice’s expected profit between when
she plays truthfully with a signal yA, denoted UT , and when she pretends to
have a signal nA and Bob believes it, denoted UB, is UT − UB = qY ((ϕBY −
ϕY (yA)) +

√
8(

1−ϕY (nA)ϕBY√
1−(ϕY (nA))2

−
√

1 − (ϕY (yA))2)) = −1.56qY < 0. ϕBY is the

expected payoff of Y when Alice pretends to have nA. The difference is negative,
showing that Alice would want to deviate from truthful betting.


