16 research outputs found

    Seismic data reveal eastern Black Sea Basin structure

    Get PDF
    Rifted continental margins are formed by progressive extension of the lithosphere. The development of these margins plays an integral role in the plate tectonic cycle, and an understanding of the extensional process underpins much hydrocarbon exploration. A key issue is whether the lithosphere extends uniformly, or whether extension varies\ud with depth. Crustal extension may be determined using seismic techniques. Lithospheric extension may be inferred from the waterloaded subsidence history, determined from\ud the pattern of sedimentation during and after rifting. Unfortunately, however, many rifted margins are sediment-starved, so the subsidence history is poorly known.\ud To test whether extension varies between the crust and the mantle, a major seismic experiment was conducted in February–March 2005 in the eastern Black Sea Basin (Figure 1), a deep basin where the subsidence history is recorded\ud by a thick, post-rift sedimentary sequence. The seismic data from the experiment indicate the presence of a thick, low-velocity zone, possibly representing overpressured sediments. They also indicate that the basement and\ud Moho in the center of the basin are both several kilometers shallower than previously inferred. These initial observations may have considerable impact on thermal models of the petroleum system in the basin. Understanding\ud the thermal history of potential source rocks is key to reducing hydrocarbon exploration risk. The experiment, which involved collaboration between university groups in the United Kingdom, Ireland, and Turkey, and BP and\ud Turkish Petroleum (TPAO), formed part of a larger project that also is using deep seismic reflection and other geophysical data held by the industry partners to determine the subsidence history and hence the strain evolution of\ud the basin

    Surface-wave imaging of the weakly-extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers

    Get PDF
    Located at the southernmost sector of the Western Branch of the East African Rift System, the Malawi Rift exemplifies an active, magma-poor, weakly extended continental rift. To investigate the controls on rifting, we image crustal and uppermost mantle structure beneath the region using ambient-noise and teleseismic Rayleigh-wave phase velocities between 9 and 100 s period. Our study includes six lake-bottom seismometers located in Lake Malawi (Nyasa), the first time seismometers have been deployed in any of the African rift lakes. Noise-levels in the lake are lower than that of shallow oceanic environments and allow successful application of compliance corrections and instrument orientation determination. Resulting phase-velocity maps reveal slow velocities primarily confined to Lake Malawi at short periods (T 25 s) a prominent low-velocity anomaly exists beneath the Rungwe Volcanic Province at the northern terminus of the rift basin. Estimates of phase-velocity sensitivity indicates these low velocities occur within the lithospheric mantle and potentially uppermost asthenosphere, suggesting that mantle processes may control the association of volcanic centers and the localization of magmatism. Beneath the main portion of the Malawi Rift, a modest reduction in velocity is also observed at periods sensitive to the crust and upper mantle, but these velocities are much higher than those observed beneath Rungwe

    Wide-angle seismic data reveal sedimentary and crustal structure of the Eastern Black Sea

    No full text
    Wide-angle seismic data from the Eastern Black Sea have been used to determine the geological structure of the sediments, the entire crust, and upper mantle. Data were acquired using a combination of ocean-bottom seismometers (OBS), land seismometers, and a marine air-gun source, providing refracted and reflected energy recorded to offsets in excess of 100 km

    Thermal alteration of terrestrial palynomorphs in mid-Cretaceous organic-rich mudstones intruded by igneous sill (Newfoundland Margin, ODP Hole 1276A)

    No full text
    Most approaches used to reconstruct thermal alteration of sediments necessitate advanced, relatively expensive analytical techniques. We have evaluated the fidelity of a less costly, relatively simple approach of visually assessing sporomorph colours to determine thermal alteration. The sporomorph-based thermal alteration estimates were compared to vitrinite reflectance data from the same samples. As study material, we selected a succession of mid-Cretaceous (Albian) organic-rich clay- and siltstones intruded by a diabase sill that was recovered from Ocean Drilling Program (ODP) Hole 1276A, off Newfoundland. Six sporomorph groups (SG), each consisting of morphologically well-defined, easily identifiable constituents with long stratigraphic ranges, were individually evaluated for their thermal alteration signals. These groups are: (1) leiotrilete spores of the genera Biretisporites, Cyathidites, Deltoidospora, Dictyophyllidites, Gleicheniidites, and Leiotriletes (SG-1; subdivided into three subgroups SG-1a, SG-1b and SG-1c with sporoderm thicknesses <1 ?m, 1–1.5 ?m and >1.5 ?m, respectively); (2) trilete, rugulate spores of the genera Camerozonosporites and Lycopodiacidites (SG-2); (3) trilete, striate spores of the genera Appendicisporites, Cicatricosisporites and Plicatella (SG-3); and (4) the gymnosperm-pollen taxon Classopollis torosus (SG-4). Sporomorph colours were determined using Munsell colour standards under reproducible optical conditions. To minimize the potential influence of reworked specimens on the dataset, only the lightest 50% of all counted specimens per sporomorph group were evaluated for their thermal alteration signals. The thermal alteration estimates from all sporomorph groups yield an internally consistent picture that is compatible with vitrinite reflectance data from the same samples. They indicate that downhole thermal alteration does not increase until 20 m above the igneous sill. A steep rise occurs only at 4.23 m above the sill, and thermal alteration peaks in the sample closest (2.17 m) to the sill. However, the different sporomorph groups exhibit varying degrees of fidelity with respect to deciphering thermal alteration. Factors influencing the precision of the thermal alteration signal include sporoderm thickness, character of surface ornamentation, resistance to reworking, and abundance in the sample material. Highest correlations with vitrinite reflectance data are observed for the thermal alteration values from SG-1b (R=0.82), SG-3 (R=0.80) and SG-4 (R=0.80). Hence, these groups are best suited for a sporomorph-based approach to reconstructing the thermal history of sediments. The highest correlation coefficient with vitrinite reflectance data is registered for SG-1b, the subgroup with the least variability of sporoderm thickness and the highest abundance in the sample material. This indicates that the study of morphologically similar, highly abundant specimens with strongly constrained sporoderm thickness variations yields the best results for the reconstruction of thermal alteration

    Wide-angle seismic data reveal extensive overpressures in the Eastern Black Sea Basin

    No full text
    We present new data that explores the link between pore pressure and seismic velocity toestimate the magnitude of the overpressure within the deep sediments of the Eastern BlackSea basin. New wide-angle seismic data, combined with coincident reflection data, havebeen modelled simultaneously using the seismic tomography code, Jive3D, to provide a wellconstrainedseismic velocity model of the sediments. Our models reveal a widespread lowvelocityzone at the depth of 5.5–8.5 km, which is characterized by a velocity decrease from3.5 to ?2.5 km s?1. Using two separate methods that relate changes in seismic velocity tochanges in effective stress, we estimate pore pressures of at least 160 MPa within the lowvelocityzone. These pore pressures give ? values of 0.8–0.9 within the centre of the basin andabove the Mid-Black Sea High. The low-velocity zone occurs within the Maikop formation,an organic-rich mud layer identified as the source of mud volcanism in the Black Sea andSouth Caspian Sea

    Data report: Marine geophysical data on the Newfoundland nonvolcanic margin around SCREECH transect 2

    No full text
    Marine geophysical data collected from the eastern Grand Banks across the Newfoundland Basin during the summer of 2000 comprise a grid of seismic, magnetic, gravity, and multibeam bathymetric data around Sites 1276 and 1277. Multichannel seismic reflection profiles image the sedimentary and crustal structure of the Newfoundland nonvolcanic rifted margin. This report presents prestack time-migrated seismic reflection profiles together with the coincident magnetic and gravity data collected during the site survey

    A new deglacial climate and sea-level record from 20 to 8 ka from IODP381 site M0080, Alkyonides Gulf, eastern Mediterranean

    No full text
    Records of relative sea-level rise for the last deglaciation are mostly limited to coral reef records and geophysical model estimates, but observational data from regions with temperate climates is sparse. We present a new relative climatic and regional sea-level rise record for glacial Termination 1 (Marine Isotope Stages [MIS] 2–1) based on ostracode paleoecology from the upper 8 m of the International Ocean Discovery Program (IODP) Site M0080 collected on Expedition 381, in the Gulf of Alkyonides, eastern Corinth basin of the Mediterranean Sea. Results show a series of major faunal transitions from lacustrine (Ponto-Caspian, Lake Corinth) glacial-age assemblages to fully marine (Mediterranean) interglacial assemblages between 20 and 8 ka. During glacial and early deglacial intervals, the Gulf of Alkyonides was characterized by non-marine lacustrine conditions with episodic sediment input from coastal, saline lake environments. Relatively stable lake shoreline conditions marked by the distinctive Tuberoloxoconcha sp. Existed from ∌17.5 to 15 ka. During the peak deglacial interval, the BØlling-AllerØd (B-A, ∌15–13.5 ka), rapid sea-level rise is indicated by a fully marine ostracode fauna colonization, which persisted from 13.5 to 7.5 ka (Late Pleistocene-Early to Middle Holocene). The transition from lacustrine to marine environments confirms that during the last glacial maximum (LGM) low sea level (130 - 125 m below present day), the Corinth-Alkyonides depocentres were lacustrine. Marine water breached the shallow Rion and Acheloos-Cape Pappas sills, which today are ∌50–60 m deep, separating the Mediterranean and Corinth-Alkyonides system beginning about 15 ka. Based on Alkyonides sedimentation rates, mean rates of sea-level rise during the B-A flooding of the Corinth-Alkyonides system are comparable to those obtained from coral reef sea level (SL) records, at least 10–20 mm yr−1. Changes in sedimentation and sill depths in this tectonically active region may have played a role in reconnection of the Mediterranean and Corinth/Alkyonides system over a prolonged period. However, the ages and scale of the faunal changes and their clear correspondence with previously published global sea-level curves and the regional sea-level curve based on deglacial land elevation changes predicted by the ICE-7G model suggests the M0080A deglacial is dominated by the glacio-eustatic sea-level rise and records details of global climate changes during Termination 1

    ï»żï»żSeismic anisotropy of the upper mantle below Western rift, East Africa

    No full text
    Although the East African rift system formed in cratonic lithosphere above a large‐scale mantle upwelling, some sectors have voluminous magmatism, while others have isolated, small‐volume eruptive centers. We conduct teleseismic shear wave splitting analyses on data from 5 lake‐bottom seismometers and 67 land stations in the Tanganyika‐Rukwa‐Malawi rift zone, including the Rungwe Volcanic Province (RVP), and from 5 seismometers in the Kivu rift and Virunga Volcanic Province, to evaluate rift‐perpendicular strain, rift‐parallel melt intrusion, and regional flow models for seismic anisotropy patterns beneath the largely amagmatic Western rift. Observations from 684 SKS and 305 SKKS phases reveal consistent patterns. Within the Malawi rift south of the RVP, fast splitting directions are oriented northeast with average delays of ~1 s. Directions rotate to N‐S and NNW north of the volcanic province within the reactivated Mesozoic Rukwa and southern Tanganyika rifts. Delay times are largest (~1.25 s) within the Virunga Volcanic Province. Our work combined with earlier studies shows that SKS‐splitting is rift parallel within Western rift magmatic provinces, with a larger percentage of null measurements than in amagmatic areas. The spatial variations in direction and amount of splitting from our results and those of earlier Western rift studies suggest that mantle flow is deflected by the deeply rooted cratons. The resulting flow complexity, and likely stagnation beneath the Rungwe province, may explain the ca. 17 Myr of localized magmatism in the weakly stretched RVP, and it argues against interpretations of a uniform anisotropic layer caused by large‐scale asthenospheric flow or passive rifting
    corecore