73 research outputs found

    HD 179949b - a close orbiting extrasolar giant planet with a stratosphere?

    Get PDF
    The original article can be found at: http://www3.interscience.wiley.com Copyright Blackwell Publishing. DOI: 10.1111/j.1365-2966.2008.13831.xWe have carried out a search for the 2.14-μm spectroscopic signature of the close orbiting extrasolar giant planet, HD179949b. High-cadence time-series spectra were obtained with the Cryogenic high-resolution InfraRed ´ Echelle Spectrograph at Very Large Telescope, Unit 1 on two closely separated nights. Deconvolution yielded spectroscopic profiles with mean signal-to-noise ratios of several thousand, enabling the near-infrared contrast ratios predicted for the HD179949 system to be achieved. Recent models have predicted that the hottest planets may exhibit spectral signatures in emission due to the presence of TiO and VO which may be responsible for a temperature inversion high in the atmosphere.We have used our phase-dependent orbital model and tomographic techniques to search for the planetary signature under the assumption of an absorption line dominated atmospheric spectrum, where T and V are depleted from the atmospheric model, and an emission line dominated spectrum, where TiO and VO are present. We do not detect a planet in either case, but the 2.120–2.174-μm wavelength region covered by our observations enables the deepest near-infrared limits yet to be placed on the planet/star contrast ratio of any close orbiting extrasolar giant planet system. We are able to rule out the presence of an atmosphere dominated by absorption opacities in the case of HD179949b at a contrast ratio of Fp/F∗ ∼ 1/3350, with 99 per cent confidence.Peer reviewe

    Red Optical Planet Survey : A radial velocity search for low mass M dwarf planets

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedWe present radial velocity results from our Red Optical Planet Survey (ROPS), aimed at detecting low-mass planets orbiting mid-late M dwarfs. The similar to 10 ms(-1) precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms-1 using our novel deconvolution technique, we are limited only by the

    VVV High Proper Motion Survey

    Get PDF
    Here we present survey of proper motion stars towards the Galactic Bulge and an adjacent plane region base on VISTA-VVV data. The searching method based on cross-matching photometric Ks-band CASU catalogs. The most interesting discoveries are shown.Peer reviewe

    Two new ultracool benchmark systems from WISE+2MASS

    Get PDF
    We have used the Two-Micron All-Sky Survey and the Wide-field Infrared Survey Explorer to look for ultracool dwarfs that are part of multiple systems containing main-sequence stars. We cross-matched L dwarf candidates from the surveys with Hipparcos and Gliese stars, finding two new systems. The first system, G255-34AB, is an L2 dwarf companion to a K8 star, at a distance of 36 pc. We estimate its bolometric luminosity as log L/L-circle dot = -3.78 +/- 0.045 and T-eff = 2080 +/- 260 K. The second system, GJ499ABC, is a triple, with an L5 dwarf as a companion to a binary with an M4 and K5 star. These two new systems bring the number of L dwarf plus main-sequence star multiple systems to 24, which we discuss. We consider the binary fraction for L dwarfs and main-sequence stars, and further assess possible unresolved multiplicity within the full companion sample. This analysis shows that some of the L dwarfs in this sample might actually be unresolved binaries themselves, since their M-J appears to be brighter than the expected for their spectral types.Peer reviewe

    Spectral investigations of CM Draconis - new results

    No full text
    CM Draconis is spectroscopic and eclipsing binary system that consists of two nearly identical M dwarfs. The masses and radii for the components are known with high accuracy. The period of the system is P = 1.268 day. In the course of this work we used 29 medium resolution (R = 47, 000) echelle spectra of CM Dra which were obtained at several different orbital phases at the 4.2-m William Herschel Telescope. We calculated synthetic spectra for a region of Nai 8185 Å, Nai 8197 Å and RbI 7818 Å lines and fitted the spectra for all of the orbital phases. We refined the effective temperature and metallicity of the system components, using similarity function (S function) of the observed and synthetic spectra for different phases

    The extremely red L dwarf ULAS J222711-004547-dominated by dust

    Get PDF
    We report the discovery of a peculiar L dwarf from the United Kingdom Infrared Deep Sky Survey Large Area Survey, ULAS J222711-004547. The very red infrared photometry (MKO J-K = 2.79 +/- 0.06, WISEW1-W2 = 0.65 +/- 0.05) of ULAS J222711-004547 makes it one of the reddest brown dwarfs discovered so far. We obtained a moderate resolution spectrum of this target using the XSHOOTER spectrograph on the Very Large Telescope, and we classify it as L7pec, confirming its very red nature. Comparison to theoretical models suggests that the object could be a low-gravity L dwarf with a solar or higher than solar metallicity. Nonetheless, the match of such fits to the spectral energy distribution is rather poor, and this and other less red peculiar L dwarfs pose new challenges for the modelling of ultracool atmospheres, especially to the understanding of the effects of condensates and their sensitivity to gravity and metallicity. We determined the proper motion of ULAS J222711-004547 using the data available in the literature, and we find that its kinematics do not suggest membership of any of the known young associations. We show that applying a simple de-reddening curve to its spectrum allows it to resemble the spectra of the L7 spectroscopic standards without any spectral features that distinguish it as a low-metallicity or low-gravity dwarf. Given the negligible interstellar reddening of the field containing our target, we conclude that the reddening of the spectrum is mostly due to an excess of dust in the photosphere of the target. De-reddening the spectrum using extinction curves for different dust species gives surprisingly good results and suggests a characteristic grain size of similar to 0.5 mu m. We show that by increasing the optical depth, the same extinction curves allow the spectrum of ULAS J222711-004547 to resemble the spectra of unusually blue L dwarfs and even slightly metal-poor L dwarfs. Grains of similar size also yield very good fits when de-reddening other unusually red L dwarfs in the L5-L7.5 range. These results suggest that the diversity in near-infrared colours and spectra seen in late L dwarfs could be due to differences in the optical thickness of the dust cloud deck.Peer reviewe

    Purple dwarfs : New L subdwarfs from UKIDSS and SDSS

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The first L subdwarf was a discovered only ten years ago. Less than ten L subdwarfs been published in the literature to date. Metal-poor ultracool atmospheres has not been well understood. Halo mass function cross substellar limit has not been measured. We used UKIDSS and SDSS to search for L subdwarfs. We have confirmed some new L subdwarfs and are following up more candidates with ground based large telescopes. We discussed spectral features of L subdwarfs and halo brown dwarfs

    Benchmark low-mass objects in Moving Groups

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In order to compile a sample of ultracool dwarfs that will serve as benchmarks for testing theoretical formation and evolutionary models, we selected low-mass cool (>M7) objects that are potentially members of five known young Moving Groups in the solar neighbourhood. We have studied the kinematics of the sample, finding that 49 targets belong to the young disk area, from which 36 are kinematic member of one of the five moving groups under study. Some of the identified low-mass members have been spectroscopically characterised (T-eff, log g) and confirmed as young members through a detailed study of age indicators

    J-band variability of M dwarfs in the WFCAM Transit Survey

    Get PDF
    We present an analysis of the photometric variability of M dwarfs in the Wide Field Camera (WFCAM) Transit Survey. Although periodic light-curve variability in low mass stars is generally dominated by photospheric star spot activity, M dwarf variability in the J band has not been as thoroughly investigated as at visible wavelengths. Spectral type estimates for a sample of over 200 000 objects are made using spectral type-colour relations, and over 9600 dwarfs (J 0.2 mag flaring event from an M4V star in our sample.Peer reviewe
    corecore