56 research outputs found

    Hypernuclear structure from gamma-ray spectroscopy

    Full text link
    The energies of p-shell hypernuclear gamma rays obtained from recent experiments using the Hyperball at BNL and KEK are used to constrain the YN interaction which enters into shell-model calculations that include both Lambda and Sigma configurations.Comment: 10 pages, 5 figures; HYP2003, Jefferson Lab, October 14-18, 2003; proceedings to appear in Nuclear Physics

    Shell-model calculations for p-shell hypernuclei

    Full text link
    The interpretation of hypernuclear gamma-ray data for p-shell hypernuclei in terms of shell-model calculations that include the coupling of Lambda- and Sigma-hypernuclear states is briefly reviewed. Next, Lambda 8Li, Lambda 8Be, and Lambda 9Li are considered, both to exhibit features of Lambda-Sigma coupling and as possible source of observed, but unassigned, hypernuclear gamma rays. Then, the feasibility of measuring the ground-state doublet spacing of Lambda 10Be, which, like Lambda 9Li, could be studied via the (K-,pi0 gamma) reaction, is investigated. Structural information relevant to the population of states in these hypernuclei in recent (e,e'K+) studies is also given. Finally, the extension of the shell-model calculations to sd-shell hypernuclei is briefly considered.Comment: 17 pages, 3 figures. Contribution to special volume on Strangeness Nuclear Physic

    Structure of unstable light nuclei

    Get PDF
    The structure of light nuclei out to the drip lines and beyond up to Z = 8 is interpreted in terms of the shell model. Special emphasis is given to the underlying supermultiplet symmetry of the p-shell nuclei which form cores for neutrons and protons added in sd-shell orbits. Detailed results are given on the wave functions, widths, and Coulomb energy shifts for a wide range of non-normal parity states in the p-shell.Comment: 21 pages, to appear in Nuclear Physics

    Nuclear shell-model calculations for 6Li and 14N with different NN potentials

    Full text link
    Two ``phase-shift equivalent'' local NN potentials with different parametrizations, Reid93 and NijmII, which were found to give nearly identical results for the triton by Friar et al, are shown to yield remarkably similar results for 6Li and 14N in a (0+2)hw no-core space shell-model calculation. The results are compared with those for the widely used Hamada-Johnson hard-core and the original Reid soft-core potentials, which have larger deuteron D-state percentages. The strong correlation between the tensor strength and the nuclear binding energy is confirmed. However, many nuclear-structure properties seem to be rather insensitive to the details of the NN potential and, therefore, cannot be used to test various NN potentials. (Submitted to Phys. Rev. C on Nov. 9, 1993 as a Brief Report.)Comment: 12 text pages and 1 figure (Figure available upon request), University of Arizona Physics Preprint (Number not yet assigned

    Coulomb Breakup Mechanism of Neutron-Halo Nuclei in a Time-Dependent Method

    Full text link
    The mechanism of the Coulomb breakup reactions of the nuclei with neutron-halo structure is investigated in detail. A time-dependent Schr\"odinger equation for the halo neutron is numerically solved by treating the Coulomb field of a target as an external field. The momentum distribution and the post-acceleration effect of the final fragments are discussed in a fully quantum mechanical way to clarify the limitation of the intuitive picture based on the classical mechanics. The theory is applied to the Coulomb breakup reaction of 11^{11}Be + 208^{208}Pb. The breakup mechanism is found to be different between the channels of jπ=12j^{\pi}=\frac{1}{2}^{-} and 32\frac{3}{2}^{-}, reflecting the underlying structure of 11^{11}Be. The calculated result reproduces the energy spectrum of the breakup fragments reasonably well, but explains only about a half of the observed longitudinal momentum difference.Comment: 15 pages,revtex, 9 figures (available upon request

    New calculations of the PNC Matrix Element for the JπTJ^{\pi}T 0+1,01^{+}1,0^{-}1 doublet in 14^{14}N

    Full text link
    A new calculation of the predominantly isoscalar PNC matrix element between the JπTJ^{\pi}T 0+1,010^{+}1,0^{-}1 (Ex_{x} \approx 8.7 MeV) states in 14^{14}N has been carried out in a (0+1+2+3+4)ω\hbar \omega model space with the Warburton-Brown interaction. The magnitude of the PNC matrix element of 0.22 to 0.34 eV obtained with the DDH PNC interaction is substantially suppressed compared with previous calculations in smaller model spaces but shows agreement with the preliminary Seattle experimental data. The calculated sign is opposite to that obtained experimentally, and the implications of this are discussed.Comment: REVTEX, 28 page

    The extended, relativistic hyperon star model

    Get PDF
    In this paper an equation of state of neutron star matter which includes strange baryons in the framework of Zimanyi and Moszkowski (ZM) model has been obtained. We concentrate on the effects of the isospin dependence of the equation of state constructing for the appropriate choices of parameters the hyperons star model. Numerous neutron star models show that the appearance of hyperons is connected with the increasing density in neutron star interiors. Various studies have indicated that the inclusion of delta meson mainly affects the symmetry energy and through this the chemical composition of a neutron star. As the effective nucleon mass contributes to hadron chemical potentials it alters the chemical composition of the star. In the result the obtained model of the star not only excludes large population of hadrons but also does not reduce significantly lepton contents in the star interior.Comment: 22 pages, revtex4, 13 figure

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics
    corecore