4,662 research outputs found

    Low order harmonic cancellation in a grid connected multiple inverter system via current control parameter randomization

    Get PDF
    In grid connected multiple inverter systems, it is normal to synchronize the output current of each inverter to the common network voltage. Any current controller deficiencies, which result in low order harmonics, are also synchronized to the common network voltage. As a result the harmonics produced by individual converters show a high degree of correlation and tend to be additive. Each controller can be tuned to achieve a different harmonic profile so that harmonic cancellation can take place in the overall system, thus reducing the net current total harmonic distortion level. However, inter-inverter communication is required. This paper presents experimental results demonstrating an alternative approach, which is to arrange for the tuning within each inverter to be adjusted automatically with a random component. This results in a harmonic output spectrum that varies with time, but is uncorrelated with the harmonic spectrum of any other inverter in the system. The net harmonics from all the inverters undergo a degree of cancellation and the overall system yields a net improvement in power quality

    Suppression of line voltage related distortion in current controlled grid connected inverters

    Get PDF
    The influence of selected control strategies on the level of low-order current harmonic distortion generated by an inverter connected to a distorted grid is investigated through a combination of theoretical and experimental studies. A detailed theoretical analysis, based on the concept of harmonic impedance, establishes the suitability of inductor current feedback versus output current feedback with respect to inverter power quality. Experimental results, obtained from a purpose-built 500-W, three-level, half-bridge inverter with an L-C-L output filter, verify the efficacy of inductor current as the feedback variable, yielding an output current total harmonic distortion (THD) some 29% lower than that achieved using output current feedback. A feed-forward grid voltage disturbance rejection scheme is proposed as a means to further reduce the level of low-order current harmonic distortion. Results obtained from an inverter with inductor current feedback and optimized feed-forward disturbance rejection show a THD of just 3% at full-load, representing an improvement of some 53% on the same inverter with output current feedback and no feed-forward compensation. Significant improvements in THD were also achieved across the entire load range. It is concluded that the use of inductor current feedback and feed-forward voltage disturbance rejection represent cost–effect mechanisms for achieving improved output current quality

    Elimination of subharmonics in direct look-up table (DLT) sine wave reference generators for low-cost microprocessor-controlled inverters

    Get PDF
    This paper investigates distortion of an inverter reference waveform generated using a direct look-up (DLT) algorithm. The sources of various distortion components are identified and the implications for application to variable speed drives and grid connected inverters are described. Harmonic and subharmonic distortion mechanisms are analyzed, and compared with experimental results. Analytical methods are derived to determine the occurrence of subharmonics, their number, frequencies and maximum amplitudes. A relationship is established identifying a discrete set of synthesizable frequencies which avoid sub-harmonic distortion as a function of look-up table length and a practical method for calculation of the look-up table indices, based on finite length binary representation, is presented. Real time experimental results are presented to verify the analytical derivations

    A systematic review of qualitative studies capturing the subjective experiences of Gay and Lesbian individuals’ of faith or religious affiliation

    Get PDF
    Individuals identifying as religious tend to report better health and happiness regardless of affiliation, work and family social support or financial status. Evidence suggests that cultural factors are intertwined with these concepts. Exploration of sexual minorities’ experiences has been neglected in previous years. Recently, a body of evidence is developing concerning this population, with theoretical speculation for changes of ‘stressors’ for future generations and implications, particularly, on mental health outcomes. Lesbian and Gay individuals of faith (or spirituality), are susceptible to unique ‘stressors’, whilst others suggest religion can provide a support network providing protective health benefits. This review systematically explores the existing published evidence for the subjective experiences and accounts of LG people of faith. Sexual minority individuals who follow a religion or faith can experience good social support, reducing the risk of negative health outcomes, while for others, potentially serious, negative mental and physical health consequences are experienced (e.g., internalised homophobia, anxiety, rejection and suicidal ideation)

    A Renormalization-Group approach to the Coulomb Gap

    Full text link
    The free energy of the Coulomb Gap problem is expanded as a set of Feynman diagrams, using the standard diagrammatic methods of perturbation theory. The gap in the one-particle density of states due to long-ranged interactions corresponds to a renormalization of the two-point vertex function. By collecting the leading order logarithmic corrections we have derived the standard result for the density of states in the critical dimension, d=1. This method, which is shown to be identical to the approach of Thouless, Anderson and Palmer to spin glasses, allows us to derive the strong-disorder behaviour of the density of states. The use of the renormalization group allows this derivation to be extended to all disorders, and the use of an epsilon-expansion allows the method to be extended to d=2 and d=3. We speculate that the renormalization group equations can also be derived diagrammatically, allowing a simple derivation of the crossover behaviour observed in the case of weak disorder.Comment: 16 pages, LaTeX. Diagrams available on request from [email protected]. Changes to figure 4 and second half of section

    Superposition in branching allocation problems

    Get PDF

    Shell model Monte Carlo calculations for Dy-170

    Full text link
    We present the first auxiliary field Monte Carlo calculations for a rare earth nucleus, Dy-170. A pairing plus quadrupole Hamiltonian is used to demonstrate the physical properties that can be studied in this region. We calculate various static observables for both uncranked and cranked systems and show how the shape distribution evolves with temperature. We also introduce a discretization of the path integral that allows a more efficient Monte Carlo sampling.Comment: 11 pages, figures available upon request, Caltech Preprint No. MAP-16
    • …
    corecore