2,112 research outputs found

    Report of the SNOMS Project 2006 to 2012, SNOMS SWIRE NOCS Ocean Monitoring System. Part 1: Narrative description

    No full text
    The ocean plays a major role in controlling the concentration of carbon dioxide (CO2) in the atmosphere. Increasing concentrations of CO2 in the atmosphere are a threat to the stability of the earth’s climate. A better understanding of the controlling role of the ocean will improve predictions of likely future changes in climate and the impact of the uptake of CO2 itself on marine eco-systems caused by the associated acidification of the ocean waters. The SNOMS Project (SWIRE NOCS Ocean Monitoring System) is a ground breaking joint research project supported by the Swire Group Trust, the Swire Educational Trust, the China Navigation Company (CNCo) and the Natural Environment Research Council. It collects high quality data on concentrations of CO2 in the surface layer of the ocean. It contributes to the international effort to better quantify (and understand the driving processes controlling) the exchanges of CO2 between the ocean and the atmosphere. In 2006 and 2007 a system that could be used on a commercial ship to provide data over periods of several months with only limited maintenance by the ships crew was designed and assembled by NOCS. The system was fitted to the CNCo ship the MV Pacific Celebes in May 2007. The onboard system was supported by web pages that monitored the progress of the ship and the functioning of the data collection system. To support the flow of data from the ship to the archiving of the data at the Carbon Dioxide Information Analysis Center (CDIAC in the USA) data processing procedures were developed for the quality control and systematic handling of the data. Data from samples of seawater collected by the ships crew and analysed in NOC (730 samples) have been used to confirm the consistency of the data from the automated measurement system on the ship. To examine the data collected between 2007 and 2012 the movements of the ship are divided into 16 voyages. Initially The Celebes traded on a route circum-navigating the globe via the Panama and Suez Canals. In 2009 the route shifted to one between Australia and New Zealand to USA and Canada. Analysis of the data is an on going process. It has demonstrated that the system produces reliable data. Data are capable of improving existing estimates of seasonal variability. The work has improved knowledge of gas exchange processes. Data from the crew-collected-samples are helping improve our ability to estimate alkalinity in different areas. This helps with the study of ocean acidification. Data from the 9 round trips in the Pacific are currently being examined along with data made available by the NOAA-PMEL laboratory forming time series from 2004 to 2012. The data from the Pacific route are of considerable interest. One reason is that the data monitors variations in the fluxes of CO2 associated with the current that flows westwards along the equator. This is one of the major natural sources of CO2 from the ocean into the atmosphere

    Properties and Therapeutic Potential of Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on TRPC5, TRPM2 and TRPA1

    Get PDF
    Mammals contain 28 genes encoding Transient Receptor Potential (TRP) proteins. The proteins assemble into cationic channels, often with calcium permeability. Important roles in physiology and disease have emerged and so there is interest in whether the channels might be suitable therapeutic drug targets. Here we review selected members of three subfamilies of mammalian TRP channel (TRPC5, TRPM2 and TRPA1) that show relevance to sensing of adversity by cells and biological systems. Summarized are the cellular and tissue distributions, general properties, endogenous modulators, protein partners, cellular and tissue functions, therapeutic potential, and pharmacology. TRPC5 is stimulated by receptor agonists and other factors that include lipids and metal ions; it heteromultimerises with other TRPC proteins and is involved in cell movement and anxiety control. TRPM2 is activated by hydrogen peroxide; it is implicated in stress-related inflammatory, vascular and neurodegenerative conditions. TRPA1 is stimulated by a wide range of irritants including mustard oil and nicotine but also, controversially, noxious cold and mechanical pressure; it is implicated in pain and inflammatory responses, including in the airways. The channels have in common that they show polymodal stimulation, have activities that are enhanced by redox factors, are permeable to calcium, and are facilitated by elevations of intracellular calcium. Developing inhibitors of the channels could lead to new agents for a variety of conditions: for example, suppressing unwanted tissue remodeling, inflammation, pain and anxiety, and addressing problems relating to asthma and stroke

    Performance Guarantees for Web Applications

    Get PDF
    Steen, M.R. van [Promotor]Pierre, G.E.O. [Copromotor]Chi, C.H. [Copromotor

    Nonlinear Stress Fluctuation Dynamics of Sheared Disordered Wet Foam

    Full text link
    Sheared wet foam, which stores elastic energy in bubble deformations, relaxes stress through bubble rearrangements. The intermittency of bubble rearrangements in foam leads to effectively stochastic drops in stress that are followed by periods of elastic increase. We investigate global characteristics of highly disordered foams over three decades of strain rate and almost two decades of system size. We characterize the behavior using a range of measures: average stress, distribution of stress drops, rate of stress drops, and a normalized fluctuation intensity. There is essentially no dependence on system size. As a function of strain rate, there is a change in behavior around shear rates of 0.07s−10.07 {\rm s^{-1}}.Comment: accepted to Physical Review

    Efficient chaining of seeds in ordered trees

    Get PDF
    We consider here the problem of chaining seeds in ordered trees. Seeds are mappings between two trees Q and T and a chain is a subset of non overlapping seeds that is consistent with respect to postfix order and ancestrality. This problem is a natural extension of a similar problem for sequences, and has applications in computational biology, such as mining a database of RNA secondary structures. For the chaining problem with a set of m constant size seeds, we describe an algorithm with complexity O(m2 log(m)) in time and O(m2) in space

    Wigner Crystalization in the Lowest Landau Level for ν≥1/5\nu \ge 1/5

    Full text link
    By means of exact diagonalization we study the low-energy states of seven electrons in the lowest Landau level which are confined by a cylindric external potential modelling the rest of a macroscopic system and thus controlling the filling factor ν\nu . Wigner crystal is found to be the ground state for filling factors between ν=1/3 \nu = 1/3 and ν=1/5 \nu = 1/5 provided electrons interact via the bare Coulomb potential. Even at ν=1/5\nu =1/5 the solid state has lower energy than the Laughlin's one, although the two energies are rather close. We also discuss the role of pseudopotential parameters in the lowest Landau level and demonstrate that the earlier reported gapless state, appearing when the short-range part of the interaction is suppressed, has nothing in common with the Wigner crystalization in pure Coulomb case.Comment: 9 pages, LaTex, 8 figure

    On Black Holes and Cosmological Constant in Noncommutative Gauge Theory of Gravity

    Full text link
    Deformed Reissner-Nordstr\"om, as well as Reissner-Nordstr\"om de Sitter, solutions are obtained in a noncommutative gauge theory of gravitation. The gauge potentials (tetrad fields) and the components of deformed metric are calculated to second order in the noncommutativity parameter. The solutions reduce to the deformed Schwarzschild ones when the electric charge of the gravitational source and the cosmological constant vanish. Corrections to the thermodynamical quantities of the corresponding black holes and to the radii of different horizons have been determined. All the independent invariants, such as the Ricci scalar and the so-called Kretschmann scalar, have the same singularity structure as the ones of the usual undeformed case and no smearing of singularities occurs. The possibility of such a smearing is discussed. In the noncommutative case we have a local disturbance of the geometry around the source, although asymptotically at large distances it becomes flat.Comment: Based on a talk given at the International Conference on Fundamental and Applied Research in Physics "Farphys 2007", 25-28 October 2007, Iasi, Romani

    Can surface flux transport account for the weak polar field in cycle 23?

    Full text link
    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.Comment: 9 pages, 8 figures, Space Science Reviews, accepte

    Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    Get PDF
    In this work, we have compared SiNx passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiNx passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 104–105 to 107) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (Dit ) is reduced (from 4.86 to 0.90 × 1012 cm−2 eV−1), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiNx passivation after full device fabrication results in the reduction of Dit and improves the surface related current collapse

    Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Get PDF
    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics
    • …
    corecore