Abstract

By means of exact diagonalization we study the low-energy states of seven electrons in the lowest Landau level which are confined by a cylindric external potential modelling the rest of a macroscopic system and thus controlling the filling factor ν\nu . Wigner crystal is found to be the ground state for filling factors between ν=1/3 \nu = 1/3 and ν=1/5 \nu = 1/5 provided electrons interact via the bare Coulomb potential. Even at ν=1/5\nu =1/5 the solid state has lower energy than the Laughlin's one, although the two energies are rather close. We also discuss the role of pseudopotential parameters in the lowest Landau level and demonstrate that the earlier reported gapless state, appearing when the short-range part of the interaction is suppressed, has nothing in common with the Wigner crystalization in pure Coulomb case.Comment: 9 pages, LaTex, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions