
Summary

Performance Guarantees for Web Applications

Users are increasingly demanding for responsive Web applications. A survey
from 2006 revealed that 62% Web users were willing to wait only 6 seconds or
less for a single page load before they leave the web site. A more recent research
(2009) indicated that this performance expectation has become more demanding as
83% Web users expected a Web page to load in 3 seconds or less. In addition, this
research also found that 79% of online shoppers who visited an underperforming
Web site were likely not to buy from that site. Obviously, performance guarantees
for Web applications are business-critical.

One important performance metric is the response time of a Web application.
The response time can be split into three parts: client-side latency, network delay,
and server-side latency. Recently, Web applications started employing client-side
codes, such as JavaScript, to enrich application features. Client-side latency refers
to the time used to execute client-side code. The research community has made
efforts to address several client-side performance issues, such as JavaScript run-
time behavior investigations for improving the representativeness of performance
benchmark suites, remote monitoring for client-side performance diagnosing, and
JavaScript performance optimizations by trace-based just-in-time compiler. In the
ICT industry, the browser war among various vendors also targets JavaScript per-
formance improvement for a major part. Client-side latency mainly depends on
two factors: application client-side code and specific mechanisms built in each
Web browser. From the perspective of Web hosting providers, these two factors
are beyond their controllable scope.

Network delay refers to the transmission time of a request’s response from the
server to the client over a network such as the Internet. Various techniques, such as
edge computing, data caching, and data replication have been proposed to reduce
these delays. Commercial products such as Akamai CDN and Amazon CloudFront
are also available for guaranteeing the best possible access performance. These

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15470627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


academic and industrial efforts work together to significantly reduce the network
delay incurred by Web applications, and have been quite successful.

Though optimizing client-side latency and network delay is important, we can-
not guarantee performance of a Web application unless its server-side latency is
also under control. For instance, previous experiments showed that service-side
latency could account for nearly 50% of the end-to-end latency of a Web applica-
tion. As Web applications continue to become more complex, we can only expect
server-side latency to increase. Server-side latency refers to the residence time of
an incoming request waiting for its response at the server. For instance, a typical
Web application consists of a business-logic tier and a data tier. The business-
logic tier may be deployed on an application server while the data tier is often
deployed on a database server. The server-side latency includes the time of exe-
cuting application code at the application server and the time of fetching data from
the database server.

Guaranteeing server-side Web application performance is made difficult by the
fact that Web application workloads are fluctuating and highly unpredictable. The
unpredictability and fluctuations introduce two important demands for the hosting
system. First, a Web-application architecture must be ready to accommodate ar-
bitrary levels of load. Second, it must be capable of adjusting its own capacity to
support fluctuating Web traffic.

On the one hand, given that Web traffic is unpredictable, one cannot predict the
maximum workload a Web application will receive in advance. Meanwhile, Web
application providers aim at attracting as many users as possible for potentially
growing business benefits. Therefore, a Web application needs to be scalable.
A scalable Web application is capable of handling arbitrary levels of traffic by
adding resources while sustaining reasonable performance. However, constructing
a scalable Web application is nontrivial in that it requires careful partitioning of
both business-logic tier and data tier.

On the other hand, the fluctuations of Web application workload make it im-
possible to plan “proper” fixed hosting resource capacity at minimal resource cost.
Cost-sensitive Web application providers, for example small and medium-sized
providers, expect a cost-effective manner to host their applications. By applying
the utility computing model to Web-application hosting and varying the number of
resources Web applications use according to the current load, application providers
can expect reducing their costs.

Utility computing provides a model of packaging computing resources as a
metered service. Since year 2000, IT providers have been making efforts to de-
velop products and services to implement utility computing model in computer
clusters and data centers. Recently, cloud computing started applying utility com-
puting by provisioning resources in a pay-as-you-go manner. In clouds, resources



such as computation, storage, and network are rented as services and charged by
usage. The utility computing model facilitates dynamic resource provisioning for
Web applications to handle varying resource demands. However, efficient dynamic
resource provisioning faces challenges from both Web applications and hosting
environments. This brings us to the central research question of this thesis: how
to guarantee the server-side performance for Web applications in a cost-effective
manner.

This thesis uses the server-side average response time as the Web-application
performance measurement. Other performance metrics, such as percentiles of the
response time, are also useful for performance guarantees. We believe that our
techniques can be extended to support such metrics. The issue of guaranteeing
server-side performance can be translated into sustaining reasonable average re-
sponse time for Web applications under fluctuating traffic. A reasonable response
time is defined to be under the maximum response time within which an appli-
cation should finish processing an incoming request. Web application providers
usually set this maximum response time in their Service Level Objectives (SLOs).

Besides choosing performance metrics, this thesis uses the number of utilized
machines as the cost measurement. A utilized machine can be either a dedicated
physical machine in a cluster or a virtual machine in a cloud. The number of
machines can be further translated into the monetary cost if given the charging
price.

This thesis mainly involves two aspects of research efforts to address our cen-
tral research question: i) constructing a scalable Web application architecture; and
ii) designing dynamic resource provisioning systems.

Constructing a scalable Web application can be done in two main ways: scale-
up and scale-out. Scale-up means adding more capacity, such as CPU speed and
memory size, to individual application servers and database servers. In contrast,
scale-out means adding more servers to the two tiers. Scale-out outperforms scale-
up when the performance/cost ratio is concerned for Web applications. Scale-
up also has a hard limit by the scale of the hardware while scale-out allows to
continuously add resources. Therefore, we construct a scalable Web application
architecture by using scale-out techniques in this thesis.

Adding more servers to the business-logic tier of a Web application can im-
prove the performance by alleviating the workload addressed to each individual
server at that tier. However, adding more servers to the data tier cannot always im-
prove the performance of that particular tier under arbitrary levels of load. Partial
database replication, careful data partition and placement, allow improved scala-
bility of the data tier through adding more resources. However, the coarse parti-
tion granularity limits the scalability extent of current scaling techniques. In this
thesis, we show the potential scalability of Web applications resulted from finer



data-partition granularity.
Though a scalable Web-application architecture provides promising mecha-

nisms for guaranteeing the performance of Web applications, Web applications
still face the issue of fluctuating traffic. Over-provisioning Web applications ac-
cording to the peak workload can result in inefficient resource usage while under-
provisioning creates a risk of violating SLO. The most straightforward technology
used to guarantee performance for Web applications under fluctuating traffic is dy-
namic resource provisioning. This technology consists of adding extra resources
to a Web application when its response time is close to violating its SLO, and
removing underutilized resources from a Web application with retaining its SLO.

Unfortunately complex Web applications and heterogeneous hosting environ-
ments challenge current dynamic resource provisioning techniques. On the one
hand, current Web applications are not designed as a monolithic 3-tier application.
For instance, the Web application used to generate Web pages of Amazon.com
consists of hundreds of services. It is hard to figure out the performance bot-
tleneck within such applications that consist of multiple interacting services. It
is even harder to handle this issue by dynamically and efficiently provisioning re-
sources. On the other hand, heterogeneous physical machines and virtual machines
in data centers and clouds result in performance heterogeneity of virtual hosting
resources. This feature also limits the applicability of current resource provision-
ing techniques that assume the existence of homogeneous underlying resources.


