407 research outputs found

    A new spectral classification system for the earliest O stars: definition of type O2

    Get PDF
    High-quality, blue-violet spectroscopic data are collected for 24 stars that have been classified as type O3 and that display the hallmark N IV and N V lines. A new member of the class is presented; it is the second known in the Cyg OB2 association, and only the second in the northern hemisphere. New digital data are also presented for several of the other stars. Although the data are inhomogeneous, the uniform plots by subcategory reveal some interesting new relationships. Several issues concerning the classification of the hottest O-type spectra are discussed, and new digital data are presented for the five original O3 dwarfs in the Carina Nebula, in which the N IV, N V features are very weak or absent. New spectral types O2 and O3.5 are introduced here as steps toward resolving these issues. The relationship between the derived absolute visual magnitudes and the spectroscopic luminosity classes of the O2–O3 stars shows more scatter than at later O types, at least partly because some overluminous dwarfs are unresolved multiple systems, and some close binary systems of relatively low luminosity and mass emulate O3 supergiant spectra. However, it also appears that the behavior of He II λ4686, the primary luminosity criterion at later O types, responds to other phenomena in addition to luminosity at spectral types O2–O3. There is evidence that these spectral types may correspond to an immediate pre-WN phase, with a correspondingly large range of luminosities and masses. A complete census of spectra classified into the original O3 subcategories considered here (not including intermediate O3/WN types or O3 dwarfs without N IV, N V features) totals 45 stars; 34 of them belong to the Large Magellanic Cloud and 20 of the latter to 30 Doradus

    The VLT-FLAMES Tarantula Survey

    Get PDF
    A spectroscopic analysis has been undertaken for the B-type multiple systems (excluding those with supergiant primaries) in the VLT-FLAMES Tarantula Survey (VFTS). Projected rotational velocities, vesini, for the primaries have been estimated using a Fourier Transform technique and confirmed by fitting rotationally broadened profiles. A subset of 33 systems with vesini ≀ 80 km s-1 have been analysed using a TLUSTY grid of model atmospheres to estimate stellar parameters and surface abundances for the primaries. The effects of a potential flux contribution from an unseen secondary have also been considered. For 20 targets it was possible to reliably estimate their effective temperatures (Teff) but for the other 13 objects it was only possible to provide a constraint of 20 000 ≀ Teff ≀ 26 000 K – the other parameters estimated for these targets will be consequently less reliable. The estimated stellar properties are compared with evolutionary models and are generally consistent with their membership of 30 Doradus, while the nature of the secondaries of 3 SB2 system is discussed. A comparison with a sample of single stars with vesini ≀ 80 km s-1 obtained from the VFTS and analysed with the same techniques implies that the atmospheric parameters and nitrogen abundances of the two samples are similar. However, the binary sample may have a lack of primaries with significant nitrogen enhancements, which would be consistent with them having low rotational velocities and having effectively evolved as single stars without significant rotational mixing. This result, which may be actually a consequence of the limitations of the pathfinder investigation presented in this paper, should be considered as a motivation for spectroscopic abundance analysis of large samples of binary stars, with high quality observational data

    The future of sovereignty in multilevel governance Europe: a constructivist reading

    Get PDF
    Multilevel governance presents a depiction of contemporary structures in EU Europe as consisting of overlapping authorities and competing competencies. By focusing on emerging non-anarchical structures in the international system, hence moving beyond the conventional hierarchy/anarchy dichotomy to distinguish domestic and international arenas, this seems a radical transformation of the familiar Westphalian system and to undermine state sovereignty. Paradoxically, however, the principle of sovereignty proves to be resilient despite its alleged empirical decline. This article argues that social constructivism can explain the paradox, by considering sovereign statehood as a process-dependent institutional fact, and by showing that multilevel governance can feed into this process

    The charismatic leadership of the ECB presidency:A language-based analysis

    Get PDF
    There is little doubt that the European Central Bank (ECB), and in particular its presidency, has taken the lead in tackling the euro crisis. But can this leadership be also characterised as charismatic? This article answers the question by focusing on language – a key component as well as a reliable indicator of charisma. By means of a software‐assisted content analysis of the entire corpus of ECB presidential speeches, it is found that the crisis has indeed led to the emergence of the Bank's presidency as a charismatic euro leader. This in turn confirms the recent politicisation of the ECB, but at the same time might be seen as mitigating the problems related to the Bank's democratic deficit, to the extent that charisma can be seen, from a Weberian standpoint, as an alternative source of political legitimacy

    Seasonality and spatial heterogeneity of the surface ocean carbonate system in the northwest European continental shelf

    Get PDF
    In 2014–5 the UK NERC sponsored an 18 month long Shelf Sea Biogeochemistry research programme which collected over 1500 nutrient and carbonate system samples across the NW European Continental shelf, one of the largest continental shelves on the planet. This involved the cooperation of 10 different Institutes and Universities, using 6 different vessels. Additional carbon dioxide (CO2) data were obtained from the underway systems on three of the research vessels. Here, we present and discuss these data across 9 ecohydrodynamic regions, adapted from those used by the EU Marine Strategy Framework Directive (MSFD). We observed strong seasonal and regional variability in carbonate chemistry around the shelf in relation to nutrient biogeochemistry. Whilst salinity increased (and alkalinity decreased) out from the near-shore coastal waters offshore throughout the year nutrient concentrations varied with season. Spatial and seasonal variations in the ratio of DIC to nitrate concentration were seen that could impact carbon cycling. A decrease in nutrient concentrations and a pronounced under-saturation of surface pCO2 was evident in the spring in most regions, especially in the Celtic Sea. This decrease was less pronounced in Liverpool Bay and to the North of Scotland, where nutrient concentrations remained measurable throughout the year. The near-shore and relatively shallow ecosystems such as the eastern English Channel and southern North Sea were associated with a thermally driven increase in pCO2 to above atmospheric levels in summer and an associated decrease in pH. Non-thermal processes (such as mixing and the remineralisation of organic material) dominated in winter in most regions but especially in the northwest of Scotland and in Liverpool Bay. The large database collected will improve understanding of carbonate chemistry over the North-Western European Shelf in relation to nutrient biogeochemistry, particularly in the context of climate change and ocean acidification

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∌10−9 to 10−7 m/s, corresponding to permeability of ∌10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation
    • 

    corecore