15 research outputs found

    Photodynamic therapy: shedding light on the biochemical pathways regulating porphyrin-mediated cell death

    No full text
    Photodynarnic therapy (PDT) is a clinically approved treatment for the ocular condition age-related macular degeneration, and certain types of cancer. PDT is also under investigation for other ocular, as well as, immune-mediated and cardiovascular indications. PDT is a two step procedure. In the first step, the photosensitizer, usually a porphyrin derivative, is administered and taken up by cells. The second step involves activation of the photosensitizer with a specific wavelength of visible light. Exposure to light of an activating wavelength generates reactive oxygen species within cells containing photosensitizer. PDT with porphyrin photosensitizers induces rapid apoptotic cell death, an event which may be attributed to the close association of these compounds with mitochondria. Thus, PDT is an attractive method to treat ailments such as cancer, vira1 infections, autoimmune disorders and certain cardiovascular diseases in which the apoptotic program may be compromised. The present review examines the cellular events triggered at lethal and sublethal PDT doses and their relationship to the subsequent effects exerted upon cells

    Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation

    No full text
    Background Skin ageing is associated with structure-functional changes in the extracellular matrix, which is in part caused by proteolytic degradation. Since cysteine cathepsins are major matrix protein-degrading proteases, we investigated the age-dependent expression of elastolytic cathepsins K, S, and V in human skin, their in vitro impact on the integrity of the elastic fibre network, their cleavage specificities, and the release of bioactive peptides. Methods Cathepsin-mediated degradation of human skin elastin samples was assessed from young to very old human donors using immunohistochemical and biochemical assays, scanning electron microscopy, and mass spectrometry. Results Elastin samples derived from patients between 10 and 86 years of age were analysed and showed an age-dependent deterioration of the fibre structure from a dense network of thinner fibrils into a beaded and porous mesh. Reduced levels of cathepsins K, S, and V were observed in aged skin with a predominant epidermal expression. Cathepsin V was the most potent elastase followed by cathepsin K and S. Biomechanical analysis of degraded elastin fibres corroborated the destructive activity of cathepsins. Mass spectrometric determination of the cleavage sites in elastin revealed that all three cathepsins predominantly cleaved in hydrophobic domains. The degradation of elastin was efficiently inhibited by an ectosteric inhibitor. Furthermore, the degradation of elastin fibres resulted in the release of bioactive peptides, which have previously been associated with various pathologies. Conclusion Cathepsins are powerful elastin-degrading enzymes and capable of generating a multitude of elastokines. They may represent a viable target for intervention strategies to reduce skin ageing

    A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity

    No full text
    Interferon-α (IFN-α) is essential for antiviral immunity, but in the absence of matrix metalloproteinase-12 (MMP-12) or IκBα (encoded by NFKBIA) we show that IFN-α is retained in the cytosol of virus-infected cells and is not secreted. Our findings suggest that activated IκBα mediates the export of IFN-α from virus-infected cells and that the inability of cells in Mmp12−/− but not wild-type mice to express IκBα and thus export IFN-α makes coxsackievirus type B3 infection lethal and renders respiratory syncytial virus more pathogenic. We show here that after macrophage secretion, MMP-12 is transported into virus-infected cells. In HeLa cells MMP-12 is also translocated to the nucleus, where it binds to the NFKBIA promoter, driving transcription. We also identified dual-regulated substrates that are repressed both by MMP-12 binding to the substrate's gene exons and by MMP-12–mediated cleavage of the substrate protein itself. Whereas intracellular MMP-12 mediates NFKBIA transcription, leading to IFN-α secretion and host protection, extracellular MMP-12 cleaves off the IFN-α receptor 2 binding site of systemic IFN-α, preventing an unchecked immune response. Consistent with an unexpected role for MMP-12 in clearing systemic IFN-α, treatment of coxsackievirus type B3–infected wild-type mice with a membrane-impermeable MMP-12 inhibitor elevates systemic IFN-α levels and reduces viral replication in pancreas while sparing intracellular MMP-12. These findings suggest that inhibiting extracellular MMP-12 could be a new avenue for the development of antiviral treatments. © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved

    Transcatheter Aortic Heart Valves Histological Analysis Providing Insight to Leaflet Thickening and Structural Valve Degeneration

    No full text
    OBJECTIVES This study investigated processes causing leaflet thickening and structural valve degeneration (SVD).BACKGROUND Although transcatheter aortic valve replacement (TAVR) has changed the treatment of aortic stenosis, concerns remain regarding SVD, potentially related to valve thrombosis and thickening, based on studies using computed tomography (CT). Detailed histological analyses are provided to help attain insights into these processes.METHODS Explanted transcatheter heart valves (THVs) were evaluated for thrombosis, fibrosis, and calcification for quantification of leaflet thickness. Immunohistochemical and microscopy approaches were used to investigate SVD-associated mechanisms.RESULTS THVs (n=23) were obtained from 22 patients (median 81 years of age; 50% male) from 0 to 2,583 days post TAVR. Maximal leaflet thickness increased relative to implant duration (p = 0.427; p = 0.027). THVs explanted after >2 years were thicker than those explanted after <2 years (p = 0.007). All THVs had adherent thrombus on both aortic and ventricular sides, which beyond 60 days was seen in combination with fibrosis and beyond 4 years had calcification. Early thrombus formation (<60 days) occurred despite rapid endothetialization with an abnormal hyperplastic phenotype. Fibrosis was observed in 6 patients on both the aortic and the ventricular THV surfaces, remodeled over time, and was associated with matrix metalloproteinase-1 expression. Five THVs showed overt calcification associated with adherent thrombus and fibrosis.CONCLUSIONS There is a time-dependent degeneration of THVs consisting of thrombus formation, endothelial hyperplasia, fibrosis, tissue remodeling, proteinase expression, and calcification. Future investigation is needed to further understand these mechanisms contributing to leaflet thickening and SVD. (C) 2019 by the American College of Cardiology Foundation.Cardiolog

    The Multiple Zeta Value data mine.

    Get PDF
    We provide a data mine of proven results for Multiple Zeta Values (MZVs) of the form ζ (s1, s2, ..., sk) = ∑n1 > n2 > ⋯ > nk > 0∞ {1 / (n1s1... nksk)} with weight w = ∑i = 1k si and depth k and for Euler sums of the form ∑n1 > n2 > ... > nk > 0∞ {(ε{lunate}1n1... ε{lunate}1nk) / (n1s1... nksk)} with signs ε{lunate}i = ± 1. Notably, we achieve explicit proven reductions of all MZVs with weights w ≤ 22, and all Euler sums with weights w ≤ 12, to bases whose dimensions, bigraded by weight and depth, have sizes in precise agreement with the Broadhurst-Kreimer and Broadhurst conjectures. Moreover, we lend further support to these conjectures by studying even greater weights (w ≤ 30), using modular arithmetic. To obtain these results we derive a new type of relation for Euler sums, the Generalized Doubling Relations. We elucidate the "pushdown" mechanism, whereby the ornate enumeration of primitive MZVs, by weight and depth, is reconciled with the far simpler enumeration of primitive Euler sums. There is some evidence that this pushdown mechanism finds its origin in doubling relations. We hope that our data mine, obtained by exploiting the unique power of the computer algebra language form, will enable the study of many more such consequences of the double-shuffle algebra of MZVs, and their Euler cousins, which are already the subject of keen interest, to practitioners of Quantum Field Theory, and to mathematicians alike
    corecore