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Blümlein, J.; Broadhurst, D. J. and Vermaseren, J. A. M. (2010). The multiple zeta value data mine. Computer
Physics Communications, 181(3) pp. 582–625.

For guidance on citations see FAQs.

c© 2009 Crown Copyright

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.cpc.2009.11.007

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82911978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.cpc.2009.11.007
http://oro.open.ac.uk/policies.html


Accepted Manuscript

The multiple zeta value data mine

J. Blümlein, D.J. Broadhurst, J.A.M. Vermaseren

PII: S0010-4655(09)00370-1
DOI: 10.1016/j.cpc.2009.11.007
Reference: COMPHY 3965

To appear in: Computer Physics Communications

Received date: 15 July 2009
Revised date: 9 November 2009
Accepted date: 14 November 2009

Please cite this article as: J. Blümlein, D.J. Broadhurst, J.A.M. Vermaseren, The multiple zeta value
data mine, Computer Physics Communications (2009), doi: 10.1016/j.cpc.2009.11.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cpc.2009.11.007


AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

DESY 09-003 arXiv:09072557; [math-ph]
NIKHEF 09-016
SFB/CPP-09-65

The Multiple Zeta Value Data Mine
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Abstract

We provide a data mine of proven results for multiple zeta values (MZVs) of the
form ζ(s1,s2, . . . ,sk) = ∑∞

n1>n2>...>nk>0

{
1/(ns1

1 ...nsk
k )

}
with weight w = ∑k

i=1 si and
depth k and for Euler sums of the form ∑∞

n1>n2>...>nk>0

{
(εn1

1 ...εnk
1 )/(ns1

1 ...nsk
k )

}
with

signs εi = ±1. Notably, we achieve explicit proven reductions of all MZVs with
weights w≤ 22, and all Euler sums with weights w≤ 12, to bases whose dimensions,
bigraded by weight and depth, have sizes in precise agreement with the Broadhurst–
Kreimer and Broadhurst conjectures. Moreover, we lend further support to these
conjectures by studying even greater weights (w ≤ 30), using modular arithmetic. To
obtain these results we derive a new type of relation for Euler sums, the Generalized
Doubling Relations. We elucidate the “pushdown” mechanism, whereby the ornate
enumeration of primitive MZVs, by weight and depth, is reconciled with the far
simpler enumeration of primitive Euler sums. There is some evidence that this push-
down mechanism finds its origin in doubling relations. We hope that our data mine,
obtained by exploiting the unique power of the computer algebra language FORM,
will enable the study of many more such consequences of the double-shuffle algebra
of MZVs, and their Euler cousins, which are already the subject of keen interest, to
practitioners of quantum field theory, and to mathematicians alike.

1Alexander-von-Humboldt Awardee.



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

1 Introduction

Multiple Zeta Values (MZVs) and Euler sums [1–3] have been of interest to mathemati-
cians [1, 4–7] and physicists [8] for a long time. One place in physics in which they are
important is perturbative Quantum Field Theory. The interest became even larger when
higher order calculations in Quantum Electrodynamics (QED) and Quantum Chromody-
namics (QCD) started to need the multiple harmonic sums S�c(N) [9–11]. Euler sums are
obtained as the limit N → ∞ of the related multiple sums Z�c(N)

ζ�c =
∞

∑
k=1

(σ(b))k

k|b|
Z�a(k−1) , (1.1)

with�c = (b,�a), b,ai ∈ Z and

Zb,�a(N) =
N

∑
k=1

(σ(b))k

k|b|
Z�a(k−1) , Z /0 = 1, Z�a(0) = 0 , (1.2)

with σ(b) = sign(b). Euler sums for which all indices are positive are called Multiple
Zeta Values. Euler sums and MZVs with the first index b = 1 diverge, but will be in-
cluded symbolically in the following, for convenience. Their degree of divergence can be
uniquely traced back to a polynomial in the single harmonic sum S1(∞) = ∑N→∞ ∑N

k=1
1
k

shown later in the text. We call the number of indices of the Euler sums and MZVs their
depth d and

w =
d

∑
k=1

|ck| (1.3)

their weight.
The number of Euler sums, resp. MZVs, up to a given weight w grows rapidly and

amounts to 2 · 3w−1 and 2w−1, respectively. A central question thus concerns to find all
the relations between the Euler sums, resp. MZVs for fixed weight and depth, and even
more importantly, new relations between MZVs at the one hand and Euler sums on the
other hand, and the corresponding bases. Besides weight and depth, another degree of
freedom, being discussed later, the pushdown p, quantifies the relation between MZVs
and Euler sums. The way to view MZVs, embedded into Euler sums, dates back to
Broadhurst [12], who conjectured the counting of basis elements at fixed {w,d}. The
corresponding conjecture for the MZVs is due to Broadhurst and Kreimer [13]2. For the
number of basis elements for MZVs of a given weight, without regard to depth, an upper
bound has been proven in [14]. This coincides with the result obtained by summing the
numbers conjectured in [13] over all depths at a fixed weight.

The relations between MZVs and Euler sums in Ref. [12] are conjectured using algo-
rithms for integer relations as PSLQ [15] and LLL [16] which use representations based
on a large number of digits.

It is well-known that MZVs obey shuffle- and stuffle-relations. This is due to their
representation in terms of Poincaré iterated integrals [17] at argument x = 1, which are

2Conjectures for fixed weight are due to Zagier [2] and probably also independently due to Drinfel’d,
Goncharov and Kontsevich.
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harmonic polylogarithms [18] on the one hand, and harmonic sums [9–11] on the other
hand. The former quantities obey a shuffle- the latter a quasi-shuffle algebra, i.e. shuf-
fling with “stuff” from polynomials of harmonic sums of lower weight. Currently no
other independent relation is known between MZVs. The Euler sums are also related by
both the shuffle- and stuffle-relations, where now also negative indices occur to indicate
alternating sums. However, these relations are not sufficient to obtain the minimal set of
basis elements as being conjectured in [12]. Starting with w = 8 it requires the doubling
relation and with w = 11 generalized doubling relations derived in the present paper. Be-
ginning with w = 12 relations occur, which allow to express MZVs of a given depth in
terms of Euler sums of a lesser depth. Part of these relations have been conjectured in
the past using integer relations [12, 19]. A main objective of the present paper is to prove
these relations applying computer algebra methods and to find relations of this type in a
more systematic way.

We investigate the Euler sums to w = 12 completely, deriving basis-representations
for all individual values in an explicit analytic calculation. For the MZVs the same anal-
ysis is being performed up to w = 22. To w = 24 we checked the conjectured size of the
basis using modular arithmetic. Under the further conjecture that the basis elements can
be chosen out of MZVs of depth d ≤ w/3 we confirm the conjecture up to w = 26. Fur-
thermore, the following runs at limited depth, using modular arithmetic keeping the high-
est weight terms only, were performed: d = 7, w = 27; d = 6, w = 28; d = 7, w = 29;
d = 6, w = 30. For the Euler sums complete results were obtained for d ≤ 3, w = 29;
d ≤ 4, w = 22; d ≤ 5, w = 17 and for d ≤ 3, w = 51; d ≤ 4, w = 30; d ≤ 5, w = 21;
d ≤ 6, w = 17 using modular arithmetic neglecting products of lower weight. The con-
jectures on the number of basis elements w.r.t. {w,d} were verified in all these cases. The
results of our analysis are made available in the Multiple Zeta Data Mine [20], to allow
users to search for yet un-discovered relations.

The paper is organized as follows. In Section 2 we summarize basic notations and
the well known relations between Euler sums. A novel type of relations, the generalized
doubling relations, is derived in Section 4. There we also discuss its impact in finding the
basis elements at a given weight w and depth d. In Section 5 an outline is given on the
details of the computer algebra code, which allowed to derive the basis-representations
of the MZVs and Euler sums. Details on the running for the different cases are reported
in Section 6. The results are stored in the Multiple Zeta Value Data Mine 3, which is
described in Section 7. To establish the solution of the problems dealt with in the current
project required some new features of FORM [21] and TFORM [22], which are described in
Section 8. In Section 9 we briefly review the status achieved by other groups and present
first results of the analysis. In particular a series of conjectures made in the mathematical
literature are confirmed within the range explored in the present study. Here we discuss
also particular choices for the respective bases. An interesting aspect representing MZVs
by Euler sums concerns the so-called pushdowns, i.e. the representation of a MZV of a
given depth d with Euler sums of depth d′ with d′ < d. These are studied in Section 10
in which we also introduce a new kind of object, the A�a–functions. They play a key
role in representing a class of Euler sums. Some more special Euler sums are studied in

3It goes without saying that also the Euler sums are covered here.
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Section 11. Section 12 contains the conclusions and an outlook. In the Appendices we
provide different basis representations and discuss the pushdowns in more detail.

2 Basic Formalism

In the following we work with three types of objects, the finite nested harmonic S�a-sums,
Z�a-sums, both at argument N ∈ N, and the harmonic polylogarithms H�a at argument
x, 0 ≤ x ≤ 1. They all can be used to define the MZVs and the Euler sums in the
limit N → ∞ and x = 1, respectively. We generally consider the case of colored objects
corresponding to n = 2, i.e. numerator weights with (±1)k, i.e. polylogarithms of square
root of unity.

The harmonic S-sums are defined by

S�a(0) = 0

Sb(N) =
N

∑
k=1

(σ(b))k

k|b|

Sb,�a(N) =
N

∑
k=1

(σ(b))k

k|b|
S�a(k) . (2.1)

In this form these sums are usually used by physicists. In particular results in QCD
[23–26] are expressed in terms of these objects4.

Next there are the Z-sums. They are defined in (1.2). These are of course very similar
to the S-sums and it is straightforward to convert from one notation to the other. The
Z-sums are mostly used by mathematicians. In the limit N → ∞ and when σ(b) = 1 for
all b they define the Multiple Zeta Values (MZVs):

ζ�a = lim
N→∞

Z�a(N) . (2.2)

When we allow σ(b) to take the values +1 or −1 and we take the limit N → ∞ we speak
of Euler sums.

Finally, there are the harmonic polylogarithms, which we will also call H-functions.
We consider the alphabets

h = {0,1,−1} and

H = {1/x,1/(1− x),1/(1+ x)} , (2.3)

which define the elements of the index set of the harmonic polylogarithms5 and the func-
tions in the iterated integrals, respectively. Let �a = {m1, . . . ,mk}, mi,b ∈ h, k ≥ 1,

4The class of Euler sums is known to be too small in general to represent all Feynman diagrams for
no-scale processes in scalar field theories, but have to be extended in higher orders [27–30]. This will apply
also for field theories as QCD and QED. Feynman-integrals are periods [31] if all ratios of Lorenz invariants
and masses have rational values [32].

5Special cases are the classical polylogarithms [33] and the Nielsen polylogarithms [34]. Generaliza-
tions of harmonic polylogarithms are found in [35, 36].
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then

Hb,�a(x) =
Z x

0
dz fb(z)H�a(z)

f0(z) = 1/z

f1(z) = 1/(1− z)
f−1(z) = 1/(1+ z)
H0(x) = log(x)
H1(x) = − log(1− x)

H−1(x) = log(1+ x) . (2.4)

The sums to infinity and the H-functions at unity are all related and can be readily trans-
formed into each other. For some applications it is most convenient to work with one set
of objects and for others other objects may be more useful. For reasons being explained
later our computer programs work mostly with H-functions at unity.

A first aspect to note is that the index fields of the sums and the functions are of a
different nature. This can be seen by introducing the notation in which the index n in the
sums can alternatively be written as n−1 zeroes followed by a one and −n is written as
n−1 zeroes followed by a minus one. In the H-functions we can absorb alternatively the
zeroes in the nonzero number to their right by raising its absolute value by one for each
zero being absorbed. This leaves only the rightmost zeroes. Hence:

S−3,4(N) = S0,0,−1,0,0,0,1(N)
Z2,−5(N) = Z0,1,0,0,0,0,−1(N)

H0,1,−1,0,0,−1,0,0(x) = H2,−1,−3,0,0(x) . (2.5)

The notation in terms of the 0,±1 we call the (iterated) integral notation. The natural
notation of the sums we call the (nested) sum notation.

Reference to the alphabet h allows us to count the number of objects and to classify
them. The number of indices in this integral notation is called the weight of the sum or
the function. For a given weight w there are 2 ·3w−1 sums and 3w H-functions. When the
sums are written in the original sum notation, the number of indices indicates the number
of nested sums. This is also called the depth of the sum. When there are no trailing zeroes
in the H-functions we can introduce the depth in the same way. Because of algebraic
relations we can express the functions with trailing zeroes as products of powers of log(x)
and H-functions with fewer indices [18,37]. In that case the concept of depth can be used
in a similar way as with the sums.

For any argument x �= 1 the H-functions form a shuffle algebra:

H�p(x)H�q(x) = ∑
�r ∈ �p �� �q

H�r(x) , (2.6)

where �p �� �q denotes the shuffle product, cf. e.g. [37], and pi,qi ∈ h. When x = 1 H-
functions for which the first index is one are divergent. It is however possible to express
them in terms of a single divergent object and other finite terms in a consistent way.
The only thing that breaks down is that there are correction terms to the shuffle relations

4
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when both objects in the left hand side are divergent, see also Ref. [18]. Because the
number of non-zero indices remains the same during the shuffle operation, we call it
depth preserving.

For general argument N the sums form a stuffle algebra, [37]. This is a general prop-
erty of sums which we show here for a double sum:

N

∑
i=1

N

∑
j=1

=
N

∑
i=1

i

∑
j=1

+
N

∑
j=1

j

∑
i=1

−
N

∑
i= j=1

=
N

∑
i=1

i−1

∑
j=1

+
N

∑
j=1

j−1

∑
i=1

+
N

∑
i= j=1

. (2.7)

The diagonal terms give extra ‘stuff’ beyond the normal shuffling in the natural notation
for the sums. Even though the diagonal terms add terms usually the stuffle relations have
fewer terms because most of the time some of the indices will have an absolute value
greater than one. We write in terms of S– or Z–notation :

Sm(N)Sn(N) = Sm,n(N)+Sn,m(N)−Sm&n(N) (2.8)

Sm(N)Sn,k(N) = Sm,n,k(N)+Sn,m,k(N)+Sn,k,m(N)−Sm&n,k(N)−Sn,m&k(N)
(2.9)

Zm(N)Zn(N) = Zm,n(N)+Zn,m(N)+Zm&n(N) (2.10)

Zm(N)Zn,k(N) = Zm,n,k(N)+Zn,m,k(N)+Zn,k,m(N)+Zm&n,k(N)+Zn,m&k(N) .

(2.11)

Here the operator & is defined by

m&n = σ(m)σ(n)(|m|+ |n|)
= σnm+σmn . (2.12)

The above algebraic relations can be used to bring an expression with many harmonic
polylogarithms or harmonic sums into a standard form. For evaluation, however, it is
often useful to work it the other way and reduce the number of objects at the highest
weight in favor of products of objects with a lower weight which are easier to evaluate.
For this the theory of Lyndon words [38] applies, but especially with the stuffles the extra
terms which have the same weight but a lower depth have to be taken along and make
things considerably more involved than pure shuffles.

A k-ary Lyndon word of length n is a n-letter concatenation product over an alphabet
of size k, which, observing lexicographical ordering is smaller than all its suffixes. Equiv-
alently, it is the unique minimal element in the lexicographical ordering of all its cyclic
permutations. The uniqueness implies that a Lyndon word is aperiodic. So it differs from
any of its non-trivial rotations. In our case we will usually replace minimal by maximal
when we form Lyndon words of indices of MZVs or Euler sums. That is, we will put the
larger indices to the left. One could also say that the concept of greater than is defined
in a special way inside the alphabet. The practical advantage is that this guarantees that
none of the MZVs of which the index string forms a Lyndon word is divergent.

5
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When we use the stuffle relations to simplify the set of objects at a given weight, we
can arrange that they are used in such a way that they never raise the value of the depth
parameter. Some terms will have a lower value for the depth. Therefore we call the
stuffles potentially depth lowering.

When we consider the sums to infinity there are two classes of extra relations worth
mentioning. The first is the ‘rule of the triangle’ which is based on

lim
N→∞

N

∑
i=1

N

∑
j=1

= lim
N→∞

N

∑
i=1

N−i

∑
j=1

+ lim
N→∞

N

∑
i=1

N

∑
j=N−i+1

. (2.13)

For most sums the second term will give a limit that goes to zero with at least one power
of 1/N, possibly multiplied by powers of log(N). This system can be generalized to the
product of any pair of sums and it can be proven that the limit of the second term vanishes
when at least one of the sums in the left hand side is finite [10]. When both are divergent
it is possible to work out which extra terms are needed. Because the sums of the first term
in the right hand side can be worked out, even in the most general case, the above gives us
an extra algebraic relation for the sums to infinity. These relations are depth preserving.

When we consider the H-functions at unity, it is easy to see that they can be written as
nested sums to infinity of the same variety as the Z-sums or the S-sums. Hence they now
obey also the stuffle algebra. And it can be shown that the ‘rule of the triangle’ is no more
than the equivalent of the shuffle algebra for the H-functions, with the same restrictions
for the double divergent terms.

The next set of relations is easy to see for finite sums:

Sm(N) =
N

∑
i=1

1
im

=
N

∑
i=1

2m 1
(2i)m =

2N

∑
i=1

2m−1 1+(−1)i

im

= 2m−1 [Sm(2N)+S−m(2N)] , (2.14)

which generalizes into

Sn1,··· ,np(N) = 2n1+···+np−p ∑
±

S±n1,··· ,±np(2N) . (2.15)

Here the sum is over all 2p plus/minus combinations. These relations are called the ‘dou-
bling relations’. For finite sums with n1 �= 1 these relations can be used directly. In the
case that divergent sums are involved there are again correction terms.

The equivalent formula for the H-functions is obtained by looking at H�a(x2) and notic-
ing that at x = 1 this is the same as H�a(x). In that case we have

H1,0,1(x2) = 2 [H1,0,1(x)−H−1,0,1(x)−H1,0,−1(x)+H−1,0,−1(x)] , (2.16)

which generalizes to any number of indices. The rule is that the factor is identical to 2m

in which m is the number of zeroes in the indices, and each one in the left hand side gives
a doubling of terms in the right hand side: one term with a corresponding 1 and one with
a corresponding −1 and an extra overall minus sign. In the left hand side one cannot have
negative indices. Again one should be careful with the divergent functions.

6
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Divergences are expressed in terms of the object S1(∞). In most cases one can use this
as a regular symbol and take it along in the equations and expressions. Unless we mention
the problems explicitly, one can exchange limits and sums when this object is combined
with finite sums. The reason is that our finite sums converge faster than that this object
diverges. A problem occurs when we use the doubling formula on it. We find:

S1(∞) = S1(2∞)+S−1(2∞)
= S1(2∞)− log(2) , (2.17)

which just shows that the divergence of S1(∞) is logarithmic, since

S1(N) = ln(N)+ γE +
1

2N
+

1
12N2 +O

(
1

N3

)
, (2.18)

cf. [25]. One can however use the stuffle relations on these objects. This allows one in
principle to express the divergent sums in terms of products of S1(∞) and finite sums as
in

S1(N)Sm,n(N) = S1,m,n(N)+Sm,1,n(N)+Sm,1,n(N)−Sm&1,n(N)−Sm,n&1(N) .

(2.19)

If we assume m �= 1 this allows us to express the divergent sum S1,m,n(∞) the way we
want it. Similarly one can now look at stuffles of S1 ·S1 to determine S1,1 and then look at
stuffles of S1,1(N) with finite sums. In the programs we give S1(∞) the name Sinf which,
due to the above, can be treated as a regular symbol.

Because we have two shuffle products - the stuffle-algebra is a quasi-shuffle algebra
[39] - we can equate the result of the stuffle product of two objects with the result of the
shuffle product of the same two objects. The resulting relation is called a double-shuffle
relation and contains only objects of the same weight. These relations have been used
in a number of calculations. For our type of calculations they are, however, not suitable.
We will use the stuffle and the shuffle relations individually. This will allow a better
optimization of the algorithms.

The concept of duality is very useful and allows us to roughly half the number of
objects that need to be computed. The duality relation is defined in the integral notation
using harmonic polylogarithms at one. It states that if we have a MZV and we reverse the
order of its indices while at the same time transforming zeroes into ones and ones into
zeroes the new object has the same value as the original. An example of this duality is the
relation

H0,1,0,1,1,1,1,1 = H0,0,0,0,0,1,0,1 (2.20)

In mathematics one traditionally considers this duality in sum notation. In that case, for a
sequence

I = (p1 +1,{1}q1−1, p2 +1,{1}q2−1, . . . , pk +1,{1}qk−1) (2.21)

there is a dual sequence

τ(I) = (qk +1,{1}pk−1,qk−1 +1,{1}pk−1−1, . . . ,q1 +1,{1}p1−1) . (2.22)

7
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The duality theorem [2] states
ζI = ζτ(I) . (2.23)

It was conjectured in [40] and is easily proven by the transformation x → 1− t of the
corresponding iterated integrals.

Because for even weights there are some elements that are self-dual this does not
divide the number of terms exactly by two. Considering that we do not have to consider
the divergent objects we have 2w−3 relevant objects when w is odd and 2w−3 + 2w/2−2

relevant objects when w is even.
For Euler sums the equivalent transformation is more complicated due to the three

letter alphabet. It is obtained by studying the transformation

x → 1− t
1+ t

(2.24)

in the integral representation. Its effect is that given the alphabet

A = 0 ← 1
x

B = 1 ← 1
1− x

C = −1 ← 1
1+ x

(2.25)

and a string of letters from this alphabet as indices of an Euler sum H, the ‘dual expres-
sion’ is obtained by reverting the string of letters and making the replacement

A → B⊕C

B → A�C

C → C . (2.26)

The addition and subtraction operators here mean that for each such transformation there
will be a doubling of the number of terms, one with the first letter and the other with the
other letter. The sign-operator ⊕(�) refers to the sign of the complete term. Because
these relations can both raise and lower the depth of a term we call them depth mixing.

We have tested that this transformation does add something new beyond what the
stuffles and the shuffles give us. In particular, when one derives equations for all sums at
a given weight, they can be used to replace the doubling and the Generalized Doubling
Relations (GDRs), see Section 4. We have tested this to weight w = 12. Unfortunately
they cannot be used when the concept of depth of the sums is important and hence we
have not used these equations in our programs.

A generalization of the Riemann ζ-function is Hurwitz’ ζ-function [6, 41] :

ζ(n,a) =
∞

∑
k=1

(sign(n))k

(k +a)|n|
, (2.27)

which can be extended to generalized Euler sums analogous to (1.1). Since a is a real pa-
rameter, one may differentiate ζ(�c,a) w.r.t. a and seek for new relations. We investigated
this possibility, but did not find new relations beyond those quoted above.

8
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When we are discussing bases into which we write the MZVs and the Euler sums we
recognize two types of basis :

Definition. A basis of a vector space of all Euler sums or MZVs at a given weight w is
called a Fibonacci basis.

Definition. A basis of the ring of all Euler sums or MZVs at a given weight w is called a
Lyndon basis if all its elements have an index field that forms a Lyndon word.

In a Fibonacci basis all basis elements are nested sums of the same weight. The name
derives from the observation that the size of such a basis for the Euler sums seem to
follow a Fibonacci rule [42]. Also the MZVs seem to follow the rule that the total number
of their basis elements follow the Fibonacci-like Padovan numbers [43], see Appendix A.

In a Lyndon basis we write in the complete basis as many elements as possible as
products of lower weight basis elements and what remains is the Lyndon basis. Simulta-
neously we require the index field to form a Lyndon word. Sometimes a Lyndon basis can
be formed from a Fibonacci basis by just selecting the Lyndon words from it. The number
of basis elements in the case of MZVs is counted by a Witt-type relation [44] based on
the Perrin numbers [45]. In the case of the Euler sums the corresponding relation relies
on the Lucas numbers [46], see Appendix A. Any other basis we will call a mixed basis.

We will usually try to arrange the Lyndon bases in such a way that they are ‘mini-
mal depth’. This means that if an element can be expressed in terms of objects with a
lower depth, it cannot be a member of the basis. Details on a variety of bases are given
in Appendix A. The complete basis we actually selected for the MZVs is presented in
Appendix B.

3 Conjectures on Bases at Fixed Weight and Depth

Broadhurst [12] and Broadhurst and Kreimer [13] formulated conjectures on the size of
the basis for Euler sums and MZVs, respectively, which we summarize in the following.

Euler sums ζ�a at given weight and depth w,d are called independent if there exists
no relation between them, cf. Sect. 2,4. The elements of the basis through which all
Euler sums can be represented in terms of polynomials are called primitive. The num-
bers of independent and primitive sums at a given weight are fixed, while different basis
representations may be chosen.

Let Ew,d be the number of independent Euler sums at weight w > 2 and depth d that
cannot be reduced to primitive Euler sums of lesser depth and their products. Thus we
believe that E3,1 = 1, since there is no known relationship between ζ3, π2 and ln(2). It is
rather natural to guess that Ew,d is given by a filtration of the coefficients of powers of x
and y in the expansion of 1/(1− xy− x2), i.e. that

∏
w>2

∏
d>0

(1− xwyd)Ew,d ?=
1− xy− x2

(1− xy)(1− x2)
= 1− x3y

(1− xy)(1− x2)
. (3.1)

It is then easy to obtain Ew,d by Möbius transformation of the binomial coefficients in

9
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Pascal’s triangle. Let

T (a,b) =
1

a+b ∑
d|a,b

µ(d)
(a/d +b/d)!
(a/d)!(b/d)!

(3.2)

where the sum is over all positive integers d that divide both a and b and the Möbius
function is defined by

µ(d) =

⎧⎨
⎩

1 when d = 1
0 when d is divisible by the square of a prime
(−1)k when d is the product of k distinct primes

(3.3)

When w and d have the same parity, and w > d, one obtains from (3.1)

Ew,d = T

(
w−d

2
,d

)
. (3.4)

With the exception of ln(2) and ζ2, which act as the seeds xy and x2, all elements of the
basis are thereby conjecturally enumerated. In this paper we provide extensive evidence
to support conjecture (3.1).

Now let Dw,d be the number of independent MZVs at weight w > 2 and depth d
that cannot be reduced to primitive MZVs of lesser depth and their products. Thus we
believe that D8,2 = 1, since there is no known relationship between the double sum Z5,3 =
∑m>n>0 1/(m5n3) and single sums or their products. It is tempting to guess to that Dw,d

is generated by filtration of the expansion of 1/(1− x2 − x3y), seeded by π2 and ζ3. But
this is not the case, since the solution of the double-shuffle algebra at weight w = 12
leaves one quadruple sum undetermined, while the obvious guess would leave none. The
conjecture [13] in this case is rather ornate, cf. Table 16.

∏
w>2

∏
d>0

(1− xwyd)Dw,d ?= 1− x3y
1− x2 +

x12y2(1− y2)
(1− x4)(1− x6)

(3.5)

with a correction term whose numerator, x12y2(1−y2), ensures that D12,4 = 1 and D12,2 =
1, in agreement with the solution of the double-shuffle algebra. The denominator (1−
x4)(1−x6) is then chosen to give D2m,2 = �(m−1)/3 for the number of primitive double
sums with weight 2m. Conjecture (3.5) is impressively supported by the data mine.

Furthermore,

∏
w>2

∏
d>0

(1− xwyd)Mw,d =
1− x2 − x3y

1− x2 (3.6)

is the conjectured generating function of the basis elements Mw,d of the MZVs when
expressed as Euler sums in a minimal depth representation, see Table 17.

4 Generalized Doubling Relations

Up to w = 10 the shuffle-, stuffle-, and doubling relations were sufficient to express the
alternating Euler sums over a basis whose size is in accordance with the conjecture in
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Ref. [12]. This is not the case from w = 11 onwards. Therefore one has to seek a new kind
of relations, which we derive in the following. Of course, when we derive all relations at
a given weight we could use the relations of (2.26). The fact that they are depth mixing
makes them useless for calculations in which the concept of depth plays a role. Hence we
need our new (depth lowering) relations anyway. We first present the derivation of this
class of relations which we call Generalized Doubling Relations (abbreviated to GDRs)
and discuss then their effect on the number of basis elements representing the Euler sums.

4.1 Derivation of the generalized doubling relations

The only relations we could find thus far adding something new to the system are the
depth 2 relations of Ref. [12]. They are based on partial fractioning in two different ways.
One way is:

1
(2i+ j)( j)

=
1

(2i+2 j)(2i+ j)
+

1
(2i+2 j)( j)

(4.1)

We can take out the factor two and in the first term the 2i is taken care of by changing
the summation over i into a summation over the even numbers by including a factor (1+
(−1)i)/2, which introduces negative indices in some Euler sums. In the other way we use
the more regular form

1
(2i+ j)( j)

=
1

(2i)( j)
− 1

(2i)(2i+ j)
. (4.2)

Together these partial fractions produce new types of relations.
Here we will give the new set of relations and their derivation. We will work with the

Z-sums. The reason is a particularly handy representation of these sums to infinity [40,
47]:

Zm1,··· ,mp(∞) =
∞

∑
i1>i2>···>ip>0

σi1
1 σi2

2 · · ·σip
p

in1
1 in2

2 · · · inp
p

=
∞

∑
x1=1

∞

∑
x2=1

· · ·
∞

∑
xp=1

σx1+x2+···+xp
1 σx2+···+xp

2 · · ·σxp
p

(x1 + x2 + · · ·+ xp)n1(x2 + · · ·+ xp)n2 · · ·(xp)np
,

(4.3)

in which we take ni = |mi| and σi to be the sign of mi.
Let us start with the re-derivation of the equation for depth d = 2. Actually we do not

reproduce it exactly, but we obtain a similar equation. Here we write for brevity Z(a,b) =
Za,b(∞). Throughout this Section we assume that a,b,c and d are positive integers. We
consider the following combination of Z-sums :
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E(a,b) =
1
2
(Z(a,b)+Z(−a,−b))

=
∞

∑
x1=1

∞

∑
x2=1

1

(x1 + x2)a xb
2

1+(−1)x1

2
=

∞

∑
x1=1

∞

∑
x2=1

1

(2x1 + x2)a xb
2

=
∞

∑
x1=1

∞

∑
x2=1

[
a

∑
i=1

A(a,b)
i

1
(2x1+2x2)a+b−i (2x1+x2)i +

b

∑
i=1

B(a,b)
i

1

(2x1+2x2)a+b−i xi
2

]

=
a

∑
i=1

A(a,b)
i 2i−a−b

∞

∑
x1=1

∞

∑
x2=1

1
(x1+x2)a+b−i (2x1+x2)i

+
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b−i, i)

=
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b− i, i)+

a

∑
i=1

A(a,b)
i 2i−a−b

∞

∑
x1=1

∞

∑
x2=x1+1

1

(x1 + x2)ixa+b−i
2

=
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b− i, i)+

a

∑
i=1

A(a,b)
i 2i−a−b

∞

∑
x1=1

∞

∑
x2=1

1

(x1 + x2)ixa+b−i
2

−
a

∑
i=1

A(a,b)
i 2i−a−b

∞

∑
x1=1

x1

∑
x2=1

1

(x1 + x2)ixa+b−i
2

=
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b− i, i)+

a

∑
i=1

A(a,b)
i 2i−a−bZ(i,a+b− i)

−
a

∑
i=1

A(a,b)
i 2i−a−b

∞

∑
x2=1

∞

∑
x1=x2

1

(x1 + x2)ixa+b−i
2

=
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b− i, i)+

a

∑
i=1

A(a,b)
i 2i−a−bZ(i,a+b− i)

−
a

∑
i=1

A(a,b)
i 2i−a−b

∞

∑
x2=1

∞

∑
x1=1

1

(x1 +2x2)ixa+b−i
2

−
a

∑
i=1

A(a,b)
i 2i−a−b

∞

∑
x2=1

1

(2x2)ixa+b−i
2

=
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b− i, i)+

a

∑
i=1

A(a,b)
i 2i−a−bZ(i,a+b− i)

−
a

∑
i=1

A(a,b)
i

∞

∑
x2=1

∞

∑
x1=1

1+(−1)x2

2
1

(x1 + x2)ixa+b−i
2

−
a

∑
i=1

A(a,b)
i 2−a−b

∞

∑
x2=1

1

xa+b
2

=
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b− i, i)+

a

∑
i=1

A(a,b)
i 2i−a−bZ(i,a+b− i)

−
a

∑
i=1

A(a,b)
i

1
2
(Z(i,a+b− i)+Z(i,−(a+b− i)))− (a+b−1)!

(a−1)! b!
2−a−bZ(a+b) , (4.4)

12



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

with

Aa,b
i =

(a+b− i−1)!
(a− i)!(b−1)!

(4.5)

Ba,b
i =

(a+b− i−1)!
(b− i)!(a−1)!

. (4.6)

Actually there is a slight problem with the above derivation. At two points we changed the
summation range. Once from ∞ to ∞/2 and once from ∞ to 2∞. This causes no problems
if the sum is finite, but for the divergent sums this needs a correction term. The second
case is harmless as it concerns only an inner sum, the step in which (−1)x2 is introduced.
But the first case, in the very first step of the derivation, needs a correction term. Hence
the full formula becomes :

E(a,σbb) =
1
2
(Z(a,σbb)+Z(−a,−σbb))

=
1
2

δ(a−1)Z(−1)Z(σbb)− 1
2

δ(a−1)δ(σbb−1)Z(−2)

+
b

∑
i=1

B(a,b)
i 2i−a−bZ(a+b− i,σbi)

+
a

∑
i=1

A(a,b)
i 2i−a−bZ(σbi,a+b− i)

−
a

∑
i=1

A(a,b)
i

1
2
(Z(σbi,σb(a+b− i))+Z(σbi,−σb(a+b− i)))

− (a+b−1)!
(a−1)! b!

2−a−bZ(a+b) . (4.7)

Here also the signs on the indices a and b are included which is only a very mild com-
plication in the derivation. The function δ(m) is one when m is zero and zero otherwise.
The σ-variables have a value that is either +1 or −1 and indicate non-alternating and al-
ternating sums. Due to the symmetry of the starting formula a sign on the first variable is
not necessary. If we put it anyway in the form of σa, σb will have to be replaced by σaσb

in the right hand side.
It is quite relevant to take these σ factors along. Although they are usually not needed

to get a complete coverage of depth d = 2 sums, in the case of greater depth sums they
are necessary.

The above derivation shows basically all techniques we need for the derivation of
the greater depth formulas. In the sequel we will only carry the σ factors that survive
conditions posed during the derivation.

The derivation of the depth 3 formula follows a similar but slightly more complicated
path. Again, we first omit the signs of the indices and the correction terms for divergent
integrals when we double or half the summation range. Then we present the complete
formula. In the derivation we will be a bit shorter this time as the techniques are all
similar to what we have shown above.
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E(a,b,c) =
1
2
(Z(a,b,c)+Z(−a,−b,c))

=
∞

∑
x1=1

∞

∑
x2=1

∞

∑
x3=1

1
(x1 + x2 + x3)a (x2 + x3)b xc

3

1+(−1)x1

2

=
∞

∑
x1=1

∞

∑
x2=1

∞

∑
x3=1

1
(2x1 + x2 + x3)a (x2 + x3)b xc

3

=
∞

∑
x1=1

∞

∑
x2=1

∞

∑
x3=1

a

∑
i=1

A(a,b)
i

1
(2x1 +2x2 +2x3)a+b−i(2x1 + x2 + x3)i xc

3

+
∞

∑
x1=1

∞

∑
x2=1

∞

∑
x3=1

b

∑
i=1

B(a,b)
i

1
(2x1 +2x2 +2x3)a+b−i(x2 + x3)i xc

3

=
b

∑
i=1

B(a,b)
i 2−a−b+iZ(a+b− i, i,c)

+
a

∑
i=1

A(a,b)
i 2−a−b+iZ(i,a+b− i,c)

−
a

∑
i=1

A(a,b)
i 2−a−b+iK(1)

1 (a+b− i, i,c)

−
a

∑
i=1

A(a,b)
i 2−a−b+iK(1)

2 (i,a+b− i,c) , (4.8)

with the K functions given below. The full formula becomes

E(a,σb b,σc c) =
1
2
(Z(a,σb b,σc c)+Z(−a,−σb b,σc c))

=
1
2

Z(−1)Z(σbb,σcc)δ(a−1)

− 1
2

Z(−2)Z(σcc)δ(a−1)δ(σbb−1)

+
1
2

Z(−3)δ(a−1)δ(σbb−1)δ(σcc−1)

+
b

∑
i=1

B(a,b)
i 2−a−b+iZ(a+b− i,σbi,σcc)

+
a

∑
i=1

A(a,b)
i 2−a−b+iZ(σbi,a+b− i,σcc)

−
a

∑
i=1

A(a,b)
i 2−a−b+iK(1)

1 (a+b− i,σbi,σcc)

−
a

∑
i=1

A(a,b)
i 2−a−b+iK(1)

2 (σbi,a+b− i,σcc) . (4.9)

14



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

The correction terms with the δ–functions are due to the halving of the summation range
in the first step. The K–functions are given by

K(1)
1 (a,σbb,σcc) =

∞

∑
x1=1

∞

∑
x2=1

σ2x1+x2
b σx2

c

(x1 + x2)a (2x1 + x2)b xc
2

= (−1)b
a

∑
i=1

A(a,b)
i 2a−iZ(i,σbσc(a+b+ c− i))

+ (−1)b
b

∑
i=1

B(a,b)
i 2a−1(Z(i,σbσc(a+b+ c− i))

+Z(−i,−σbσc(a+b+ c− i)))

+ (−1)bB(a,b)
1 2a−1Z(−1)Z(σbσc(a+b+ c−1)) (4.10)

K(1)
2 (σaa,b,σcc) =

∞

∑
x1=1

∞

∑
x2=1

∞

∑
x3=1

σx1+2x2+x3
a σx3

c

(x1 +2x2 + x3)a (x2 + x3)b xc
3

= (−1)c2b−1
c

∑
i=1

B(b,c)
i (−1)i(Z(σaa,(b+ c− i),σci)

+Z(σaa,−(b+ c− i),−σci))

− (−1)c2b−1
b

∑
i=1

A(b,c)
i (Z(σaa,σc(b+ c− i), i) (4.11)

+Z(σaa,σc(b+ c− i),−i))

− (−1)c2b−1 (b+ c−1)!
(b−1)! c!

(Z(σaa,(b+ c))+Z(σaa,−(b+ c)))

The last term in the function K(1)
1 is also a correction term because we have to double the

summation range on the Z-function of which the first index is one. Because the second
index cannot be one in that case, we only need one correction term.

At depth 4 the relation becomes yet a bit more complicated but the derivation follows
exactly the same path. We start with applying the non-trivial partial fractioning and then
we have to try to rewrite the results in terms of Z–functions by percolating the factors two
to the right. As there is one more sum this takes another step and we get two layers of
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K–functions:

E(a,σb b,σc c,σd d) =
1
2
(Z(a,σb b,σc c,σd d)+Z(−a,−σb b,σc c,σd d))

=
1
2

Z(−1)Z(σbb,σcc,σd d))δ(a−1)

− 1
2

Z(−2)Z(σcc,σd d))δ(a−1)δ(σbb−1)

+
1
2

Z(−3)Z(σd d))δ(a−1)δ(σbb−1)δ(σcc−1)

− 1
2

Z(−4)δ(a−1)δ(σbb−1)δ(σcc−1)δ(σdd −1)

+
b

∑
i=1

B(a,b)
i 2−a−b+iZ(a+b− i,σbi,σcc,σd d))

+
a

∑
i=1

A(a,b)
i 2−a−b+iZ(σbi,a+b− i,σcc,σd d))

−
a

∑
i=1

A(a,b)
i 2−a−b+iK(1)

1 (a+b− i,σbi,σcc,σd d))

−
a

∑
i=1

A(a,b)
i 2−a−b+iK(1)

2 (σbi,a+b− i,σcc,σd d)) (4.12)
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K(1)
1 (a,σbb,σcc,σdd) =

∞

∑
x1=1

∞

∑
x2=1

∞

∑
x3=1

σ2x1+x2+x3
b σx2+x3

c σx3
d

(x1 + x2 + x3)a (2x1 + x2 + x3)b (x2 + x3)c xd
3

= (−1)b
a

∑
i=1

A(a,b)
i 2a−iZ(i,σbσc(a+b+ c− i),σdd)

+ (−1)b
b

∑
i=1

B(a,b)
i 2a−1(Z(i,σbσc(a+b+ c− i),σdd)

+Z(−i,−σbσc(a+b+ c− i),σdd))

+ (−1)bB(a,b)
1 2a−1Z(−1)Z(σbσc(a+b+ c−1),σdd) (4.13)

K(1)
2 (σaa,b,σcc,σdd) =

∞

∑
x1=1

· · ·
∞

∑
x4=1

σx1+2x2+x3+x4
a σx3+x4

c σx4
d

(x1+2x2+x3+x4)a (x2+x3+x4)b (x3+x4)c xd
4

= (−1)c2b−1
c

∑
i=1

B(b,c)
i (−1)i(Z(σaa,(b+ c− i),σci,σdd)

+Z(σaa,−(b+ c− i),−σci,σdd))

+ (−1)c
b

∑
i=1

A(b,c)
i 2b−iZ(σaa,σc(b+ c− i), i,σdd)

− (−1)c
b

∑
i=1

A(b,c)
i 2b−iK(2)

1 (σaa,σc (b+ c− i), i,σd d))

− (−1)c
b

∑
i=1

A(b,c)
i 2b−iK(2)

2 (σaa,σc (b+ c− i), i,σd d)) (4.14)

K(2)
1 (σa a,σbb,c,σdd) =

∞

∑
x1=1

∞

∑
x2=1

∞

∑
x3=1

σx1+2x2+x3
a σ2x2+x3

b σx3
d

(x1 +2x2 + x3)a (2x2 + x3)b (x2 + x3)c xd
3

= (−1)d
c

∑
i=1

A(c,d)
i 2c−iZ(σa a,σbσd (b+c+d−i), i)

+ (−1)d2c−1
d

∑
i=1

B(c,d)
i (−1)i(Z(σa a,(b+c+d−i),σbσd i)

+Z(σa a,−(b+c+d−i),−σbσd i))

− (−1)d2c−1
c

∑
i=1

A(c,d)
i (Z(σa a,σbσd (b+c+d−i), i)

+Z(σa a,σbσd (b+c+d−i),−i))

− (−1)d2c−1 (c+d −1)!
(c−1)! d!

(Z(σa a,(b+c+d))

+Z(σa a,−(b+c+d))) (4.15)

K(2)
2 (σaa,σbb,c,σdd) =

∞

∑
x1=1

· · ·
∞

∑
x4=1

σx1+x2+2x3+x4
a σx2+2x3+x4

b σx4
d

(x1+x2+2x3+x4)a (x2+2x3+x4)b (x3+x4)c xd
4
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= (−1)d2c−1
d

∑
i=1

B(c,d)
i (−1)i(Z(σaa,σbb,(c+d−i),σdi)

+Z(σaa,σbb,−(c+d−i),−σdi))

+ (−1)d
c

∑
i=1

A(c,d)
i 2c−iZ(σaa,σbb,σd(c+d−i), i)

− (−1)d2c−1
c

∑
i=1

A(c,d)
i (Z(σaa,σbb,σd(c+d−i), i)

+Z(σaa,σbb,σd(c+d−i),−i)

− (−1)d2c−1 (c+d−1)!
(c−1)! d!

(Z(σaa,σbb,(b+ c))

+Z(σaa,σbb,−(b+ c))) . (4.16)

When we do depth 5 we see that, like K(1)
2 , also the K(1)

1 splits off two new functions.
Hence to produce a generic routine for any depth we have to look at a few very general
steps.

In the general case the equations (4.12, 4.13) and (4.15) stay more or less the same.
They just get more indices to the right. The difference comes with the equations for
K(2). We have to make a distinction whether there are still many indices to the right or
whether we are terminating. The terminating equations are also more or less the same
as the equations for K(2) above, but now with more indices to the left. This leaves the
‘intermediary’ objects:

K(i)
1 (M,σaa,b,σcc,N) =

∞

∑
x1=1

∞

∑
x2=1

σxM+2x1+x2+xN
a σx2+xN

c

(xM+2x1+x2+xN)a(x1+x2+xN)b(x2+xN)c (4.17)

K(i)
2 (M,σaa,σbb,c,σdd,N) =

∞

∑
x1=1

∞

∑
x2=1

σxM+2x1+x2+xN
a σ2x1+x2+xN

b σx2+xN
d

(xM+2x1+x2+xN)a(2x1+x2+xN)b(x1+x2+xN)c(x2+xN)d .

(4.18)

In these formulas M and N indicate a range of indices. There are more sums and factors
in the numerator and denominator, but we just omit them as they do not take part in the
‘action’. We use the same techniques applied before to move the factor 2 that multiplies
x1 to x2, to the right. When N is empty we run into a termination condition and switch to
the equations for K(2),

K(i)
1 ((M),σaa,b,σcc,(n1,N)) =

(−1)c
b

∑
i=1

A(b,c)
i 2b−iZ(M,σaa,σc(b+ c− i), i,n1,N)

+(−1)c
c

∑
i=1

B(b,c)
i 2b−1(−1)i(Z(M,σaa,(b+ c− i),σci,n1,N)

+Z(M,σaa,−(b+ c− i),−σci,n1,N))
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−(−1)c
b

∑
i=1

A(b,c)
i 2b−iK(i)

1 ((M,σaa),σc(b+ c− i), i,n1,(N))

−(−1)c
b

∑
i=1

A(b,c)
i 2b−iK(i)

2 ((M),σaa,σc(b+ c− i), i,n1,(N)) (4.19)

K(i)
2 ((M),σaa,σbb,c,σdd,(n1,N)) =

(−1)d
c

∑
i=1

A(c,d)
i 2c−iZ(M,σaa,σbσd(c+d− i), i,n1,N)

+(−1)d
d

∑
i=1

B(c,d)
i 2c−1(−1)i(Z(M,σaa,σb(b+ c+d − i),σdi,n1,N)

+Z(M,σaa,−σb(b+ c+d − i),−σdi,n1,N))

−(−1)d
c

∑
i=1

A(c,d)
i 2c−iK(i)

1 ((M,σaa),σbσd(b+ c+d − i), i,n1,(N))

−(−1)d
c

∑
i=1

A(c,d)
i 2c−iK(i)

2 ((M,σaa,(b+ c+d− i),σbσdi,n1,(N)) . (4.20)

As one can see, each step of the iteration diminishes N by one unit (n1 is an index with its
sign) and M may or may not get one more index.

The above formulas can be programmed rather easily and compactly in a language
like FORM. We have first programmed and tested the cases 2, 3, 4, 5 and after that we
have made a generic routine that can handle any depth. Also this routine has been tested
exhaustively. It can be found in the library.

4.2 The Role of the Generalized Doubling Relations

Let us start with a modification of the program for expressing Euler sums into a minimal
set that was used for testing TFORM [22]. It was modified, so as to allow running only with
sums/functions up to a given depth. We use the same relations, up to that depth, as in the
complete program, i.e. we use the stuffles, the shuffles and the doubling relations, but not
the GDRs. This should generate new information because one is often interested in sums
of limited depth but large weight.

When we compare the number of remaining variables with the conjectures [12, 13],
we note that in many cases we have more variables left. However, if we increase the depth
these remaining variables are eliminated after all. We set up the program in such a way
that these objects may be recognized easily. In Table 1 we present how many of these
constants are left and at which depth.

Table 1 indicates that there must be a significant ‘leaking’ of relations at greater depths
that create nontrivial results at lower depth. As an example we derived the d = 2 relation at
weight 6 without substituting the lower weight constants and keeping track of all products
of lower weight objects that combined in shuffles and in stuffles. The relation we refer to
is given as Eq. (27) in Ref. [12] :

Z−4,−2(∞) = −H−4,2(1) =
97

420
ζ3

2 −
3
4

ζ2
3 . (4.21)
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weight depth number type
6 2 1 d = 2
6 3 1 d = 2
6 4 0
6 5 0
6 6 0
7 3 1 d = 3
7 5 0
8 2 1 d = 2
8 4 2 d = 2,d = 4
8 6 0
9 3 3 3× (d = 3)
9 5 2 d = 3,d = 5
9 7 0

10 2 2 2× (d = 2)
10 3 2 2× (d = 2)
10 4 6 2× (d = 2),4× (d = 4)
10 5 6 2× (d = 2),4× (d = 4)
10 6 3 d = 2,d = 4,d = 6
10 8 0

Table 1: Number of constants remaining when running at fixed depth for a given weight.
With fixed depth we mean all depths up to the given value.

depth shuffles stuffles
2 11 8
3 52 19
4 72 41

Table 2: Number of shuffles and stuffles separated by depth contributing to equation
(4.21).

The results are shown in Table 2.
We see that a total of 203 equations make contributions to the final result. Considering

this, it should not come as a great surprise that attempts to derive this equation by hand
using shuffle and stuffle relations have failed thus far.

It is of course possible to obtain this result by different means as was shown in ref [26]
where the finite harmonic sum S−4,−2(N) was calculated in terms of the following one-
dimensional integral representation:

S−4,−2(N) = −M
[(

4Li5(−x)− ln(x)Li4(−x)
x−1

)
+

]
(N) (4.22)

+
1
2

ζ2 [S4(N)−S−4(N)]− 3
2

ζ3S3(N)+
21
8

ζ4S2(N)− 15
4

ζ5S1(N) ,
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where

M[ f (x)](N) =
Z 1

0
dx xN f (x) . (4.23)

Since

Z 1

0
dx

4 [Li5(−x)+(15/16)ζ5]− ln(x)Li4(−x)
x−1

= −811
840

ζ3
2 +

3
4

ζ2
3 (4.24)

one obtains with

Z−4,−2 = lim
N→∞

S−4,−2(N)−ζ6 (4.25)

the above result. It should, however, be clear that if such methods are needed to replace
the phenomenon of leakage, it will be a near impossibility to go to much greater values of
the weight parameter.

Using the GDRs at depth d = 2 resolves the problem completely. Only the depth d = 2
shuffles and stuffles in combination with these GDRs give already the desired formula.

To study the problem at depth d = 3, we recreated an old program by one of us6 that
only determines relations at leading depth for objects of which the index field is a Lyndon
word. The FORM version of the program is rather fast when applied at depth d = 3, see
Table 3.

We see a steady increase in the number of undetermined constants. In Tables 3, 4 we
list under ‘expected’ the number of undetermined constants according to conjecture [12].
The results for the weights 7 and 9 are in agreement with the numbers in Table 1.

To see whether we could improve the situation, we tried programming generalizations
of the formulas D0 and D1 of Ref. [48]. They made no difference. Close inspection
reveals that the formula D0 is another form of the shuffle formulas with the combinatorics
included properly. The formula D1, or Markett formula [49], also does not add anything
new. It seems to be a combination of shuffles and stuffles. Next we applied the GDRs
at depth d = 3 and these reduce the number of undetermined constants to their expected
value. This means that if we include the GDRs we can run the program at maximum
depth d = 3 and get a complete set of expressions for all depth d = 1,2 and 3 objects. At
the moment we have verified this for all weights up to w = 51. The run for the highest
weight took about 20 hours of CPU time on a single Xeon processor at 2.33 GHz.

We have made a similar program for depth d = 4. This is of course much slower
and hence we cannot go to such large values for the weight. The results are given in
Table 4. Again we see an increase in the number of extra undetermined objects and again
application of the GDRs resolved the issue.

The phenomenon of leakage is rather messy. Basically equations that are in nature of
a greater depth have to combine first to eliminate most objects of this depth. After this a
few equations remain between lower depth objects. Such leakage is impossible without
the stuffle relations. The shuffle relations by themselves do not give terms with a lower

6The program had an error and hence gave rise to a wrong conjecture.
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weight constants expected
5 1 1
7 3 2
9 6 3

11 11 5
13 17 7
15 23 9
17 32 12
19 41 15
21 51 18
23 63 22
25 76 26
27 89 30
29 105 35
31 121 40
33 138 45
35 157 51
37 177 57
39 197 63
41 220 70
43 243 77
45 267 84
47 293 92
49 320 100
51 347 108

Table 3: Remaining constants at depth d = 3 compared to the number of expected con-
stants.

weight constants expected
6 1 1
8 3 2

10 9 5
12 21 8
14 39 14
16 66 20
18 102 30
20 149 40
22 209 55

Table 4: Remaining constants at depth d = 4 compared to the number of expected con-
stants.
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weight no doubling no GDRs
8 1 0

10 1 0
11 2 1
12 3 1

Table 5: Number of excess elements when no doubling relations (also no GDRs) are used,
and when only no GDRs are used.

depth and neither do the relations based on the doubling formula. But whether these extra
relations come from the stuffles alone or materialize only after combining stuffles and
shuffles, and maybe doublings, is currently not clear. What is clear is that they involve a
very large number of equations. In all cases which we studied the leakage goes over at
least two units of depth. This makes it very difficult to investigate. Fortunately the GDRs
seem to resolve these problems. We formulate

Conjecture 1: The stuffle, shuffle, doubling and Generalized Doubling Relations are
sufficient to reduce the Euler sums of a given weight and depth to a minimal set that is in
agreement with the conjecture [12], both in weight and in depth. �

Even if we could dispense with the GDRs up to weight w = 10, the whole situation
changes at weight w = 11, see Table 5. Running only stuffles, shuffles and doubling
relations leaves one variable in excess of the conjecture [12]. The GDRs provide the
missing equation by which this variable is expressed in terms of the other remaining
variables and agreement with conjecture [12] is reached. The same effect occurs at weight
w = 12. Again there is one variable too many if the GDRs are not used. We cannot check
this beyond weight w = 12, because leakage forces us to run all depths for a given weight
if we exclude the GDRs. This becomes excessive in terms of current computer resources.
Alternatively one could have used the relations of equation (2.26) to resolve this issue,
but these relations do not help with the problem of running at a limited depth. Hence we
have to add the GDRs anyway.

5 The Computer Program

We have combined the above relations into a new computer program to resolve all re-
lations between MZVs and reduce them to a minimal set. In principle this is done by
writing down all equations for the MZVs of a given weight and then solving the system.
A few variables at the given weight may remain and there will be products of objects of
lower weight.

Considering the size of the problem and its sparsity it did not look to us like a typical
problem to solve by matrix techniques even though other people have done so [50, 51].
Typically there would be many thousands of zeroes for each non-zero element. The ad-
vantage of computer algebra is that in a sparse polynomial representation those zeroes will
not be present and need no attention. Hence we have selected a rather special method the
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essence of which has already been used in references [10, 18, 22], although not described
there in detail. We select the FORM system, because it is by far the best suited for this kind
of problems. Since we go to much greater weights than previously investigated, we take
the opportunity to give here a better description of the completely renewed version of the
program.

We start generating a master expression which contains one term for each sum that we
want to compute. For the MZVs of weight w = 4 this expression looks in computer terms
like

FF =
+E(0,0,0,1)*(H(0,0,0,1))
+E(0,0,1,1)*(H(0,0,1,1))
+E(0,1,0,1)*(H(0,1,0,1));

We have used already that we will only compute the finite elements and that there is a
duality that allows us to eliminate all elements with a depth greater than half the weight.
When the depth is exactly half the weight we choose from a sum and its dual the element
that comes first lexicographically. We work in terms of the H-functions because for the
Euler sums the basis of reference [12] turns out to be ideal. This basis consists of all
Lyndon words of negative odd integers that add up in absolute value to the weight. For
the MZVs these H-functions and the Z-functions are identical anyway and hence we could
keep a single program for most procedures.

We pull the function E outside brackets. The contents of a bracket is what we know
about the object indicated by the indices of the function E. In the beginning this is all
trivial knowledge.

Assume now that we generate the stuffle relation

H0,1H0,1 = H0,0,0,1 +2H0,1,0,1 (5.1)

The left hand side can be substituted from the tables for the lower weight MZVs. Hence
it becomes ζ2

2. In the program ζ2 is called z2. The right hand side objects are replaced by
the contents of the corresponding E brackets in the master expression. These are for now
trivial substitutions. From the result we generate the substitution

id H(0,1,0,1) = z2ˆ2/2-H(0,0,0,1)/2;

which we apply to the master expression. Hence the master expression becomes

FF =
+E(0,0,0,1)*(H(0,0,0,1))
+E(0,0,1,1)*(H(0,0,1,1))
+E(0,1,0,1)*(z2ˆ2/2-H(0,0,0,1)/2);

Let us now generate the corresponding shuffle relation:

H0,1H0,1 = 4H0,0,1,1 +2H0,1,0,1 (5.2)
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and replace the right hand side objects by the contents of the corresponding E brackets in
the master expression. This gives

ζ2
2 = 4H0,0,1,1 +ζ2

2 −H0,0,0,1 (5.3)

which leads to the substitution

id H(0,0,1,1) = H(0,0,0,1)/4;

and we obtain

FF =
+E(0,0,0,1)*(H(0,0,0,1))
+E(0,0,1,1)*(H(0,0,0,1)/4)
+E(0,1,0,1)*(z2ˆ2/2-H(0,0,0,1)/2);

We also need the divergent shuffles and stuffles. This is done by including the shuffles
involving the basic divergent object and breaking down the multiple divergent sums with
the stuffle relations as in:

H1H0,0,1 = 2H0,0,1,1 +H0,1,0,1 +H1,0,0,1

= −H0,0,0,1 +H0,0,1,1 +H0,1,0,1 +H1H0,0,1; (5.4)

In the case we use H1 as the only divergent object, this is equivalent to using Hoff-
mann’s [52] relation. We can use any combination involving divergent objects, provided
not both are divergent simultaneously. Substituting from the master expression we get the
relation

0 = −5
4

H0,0,0,1 +
1
2

ζ2
2 (5.5)

and hence the substitution

id H(0,0,0,1) = z2ˆ2*2/5;

and finally the master expression becomes

FF =
+E(0,0,0,1)*(z2ˆ2*2/5)
+E(0,0,1,1)*(z2ˆ2/10)
+E(0,1,0,1)*(z2ˆ2*3/10);

Now we can read off the values of all MZVs of weight 4 that we set out to compute. All
other elements can be obtained from these by trivial operations that involve the use of one
or two relations only.

The method should be clear now: we generate the master expression that contains all
nontrivial objects that we need to compute. Then we generate all known equations one
by one, putting in the knowledge that is contained in the master expression. After that
we incorporate the new knowledge in the master expression (provided the equation does
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w/g 64 128 256 512 1024 2048 4096
9 62 56 61

10 477 406 442
11 5826 4651 3799 3623 5157
12 65591 50926 62867

Table 6: Execution times in seconds for Euler sums at any depth as a function of weight
and the size of the groups in the Gaussian elimination scheme. All runs were with TFORM
on an 8 Xeon-cores machine at 3 GHz.

not become trivial which will happen frequently, because we have more equations than
variables).

With this method we do not need all equations to be in memory simultaneously. But
there is a very important observation: the order in which the equations are generated will
determine the size the master expression can have during the calculation. This intermedi-
ate expression swell should be controlled as much as possible, because it can make many
orders of magnitude difference in the execution time and the space needed. And there
is another problem: substituting a new equation in the master expression can be rather
costly when this expression becomes rather big. To have to do this each time is wasteful
because the master expression will have to be brought to normal order again. Therefore
we have adopted a scheme in which we generate the equations in groups. Then we apply
first a Gaussian elimination scheme among the equations in the group, eliminating both
above and below the diagonal. If we have G equations left we can substitute G variables
in the master expression simultaneously. Again, this is not optimal yet as that would give
G substitution statements and hence each term needs G pattern matchings. To improve
upon this we enter these G objects in a temporary table and the substitution in the master
expression is by a single table lookup. This is a binary search inside FORM and hence when
we have grouped for instance 512 equations, the lookup takes only 9 compares, each of
which is anyway much faster than a full pattern matching. The difference shows in a run
we made on a machine with a single Opteron processor. When running the equations for
MZVs one by one at weight 18, the run took 26761 sec, while with groups of 256 equa-
tions the same program ran in 2974 sec. Over the range in weights that we experimented
with, the optimal group size we found for the MZVs was close to 2(w−1)/2. This is the
value we use in the program. For the Euler sums the best value obeys a more involved
relation because the number of variables goes with a power of three. We have measured
the effect and it is shown in Table 6. From this Table it looks like a decent value for the
size of the groups is 23w/2−7 in which the exponent is rounded down to the nearest integer.
We see, however, that the exact value is not very critical.

If it would be of great importance to improve over this scheme, one could set up a
tree structure in the Gaussian scheme. This would change its quadratic (in the size of the
groups) nature to a G log(G) behaviour. It would, however, make the code much more
complicated and anyway, this is not where currently most computer time is used. As a
consequence we decided to stay with the simple grouping.

This leaves determining a good order in which to generate the equations. It requires
much trial and error and we are not claiming that we have the best scheme possible. The
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scheme for the stuffles is rather good, but for the shuffles it could probably be better. Once
we could run what we wanted to run, we have stopped searching intensively. Anyway, the
intermediate expression swell is rather moderate as is shown in the Tables containing the
results below.

Before we discuss the order of the equations, we make several observations:

• Shuffles preserve depth.

• Stuffles either preserve depth or lower it.

• The number of indices that are one in sum notation is either preserved or lowered
by stuffles.

• The shuffle relations can contain many more terms than the stuffle relations.

• The shuffles (which are executed in integral notation) can contain large combina-
toric factors when there are long sequences of zeroes or ones. This lowers the
number of terms in the equation.

Based on the above observations we start with the equations with the lowest depth,
and then do the ones with the next depth, etc. In the case that we only look at the MZVs,
we only need to go up to half the weight (rounded down), because the duality relation
takes care of the other sums. In the case of the Euler sums we have to go ‘all the way’.

For each depth we do first the stuffles and then the shuffles. There are actually con-
jectures about that one does not need all stuffles but only a limited subset. We do not use
these conjectures because they would make it necessary to apply more shuffle relations
and those are more complicated than the stuffles that we would omit. We have verified
experimentally that this would make the program significantly slower.

In the case of Euler sums we have two more categories of equations: the equations
due to the doubling relation and the equations due to the GDRs. It looks like we do not
need all equations from the latter category, but because they are not extremely costly, we
have not been motivated enough to run many programs testing what can be done here. We
just run them all and this way there is no risk that we omit something essential. They are,
however, more costly than the shuffle equations and hence we put them after the shuffles.
But more ordering within the group of (generalized) doubling equations is not relevant as
there are only comparatively few substitutions generated by them.

To deal with the stuffles at a given weight and depth we generate an expression that
contains one term for each stuffle relation that we will use. Then we apply several oper-
ations that multiply each term with a function with arguments based on the equation to
be generated. The effect of this is that at the next sorting the equations will be ordered
according to these arguments. This can be done in a rather flexible way. The ordering is
in sum notation according to:

• The number of indices that are one.

• Next comes the number of indices that are two, then three etc.

• The number of indices in the sum with the smallest depth.
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• The largest first index in either of the two sums.

This relatively simple ordering is amazingly effective. When we compute the size of
the basis, using arithmetic over a 31-bit prime number, it gives a nearly monotonically
increasing size in the master expression, indicating that it will be very hard to improve
upon it. Once we have this expression we use a feature of FORM that allows one to define
a loop in which the loop variable takes a value which is (sequentially) each time a term
from a given expression. This way we can now create expressions for each equation and
each time we have enough equations to fill a group we call the routine that will expand the
equations and process them. We do not consider stuffle equations that contain a divergent
sum. Those are taken into consideration anyway when we have to extract the divergences
in the shuffle equations, and for the Euler sums the GDRs.

For the shuffles things are more complicated. Again we generate an expression for
all shuffles for the given depth. In this case we generate however only those objects that
correspond to shuffles in which one of the objects is only of depth one. This seems to be
sufficient. We have never run across a case where the other shuffles had any additional ef-
fect. It is actually possible to restrict the number of shuffle equations even more, although
this is only based on conjectures and experimentation. A formal proof is missing. The
ordering is now done according to

• The weight of the object of depth one.

• The number of indices that are one in sum notation.

• For each sum we compute the sum of the squares of the indices in sum notation.
We order by the maximum of either of the two. The biggest comes first.

• We select which of the two sums has the smallest first index. The larger values for
this number come first.

• We add the first indices of the two sums. The larger values come first.

The complicating factor here is that we have to keep divergent sums. We only keep those
equations in which at most one object is divergent, and there is only a single divergence.
Hence sums that have the first two indices equal to one are not considered.

According to observation the shuffle equations that fulfill all following requirements
always reduce to trivial (0 = 0) equations:

• The combined depth is at least three.

• There is at least one index that is equal to one.

• The depth one object has at least weight two.

• If the depth one object has weight w = 2, there are at least two indices equal to one
in the other object.
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MZVs
Rational arithmetic
Complete results
W = 21

MZVs
Modular arithmetic
Basis only
W = 26, D = 8

Figure 1: Performance of the program. On the x-axis we have the number of the module
in which one group of equations is substituted and on the y-axis the size of the expression
at the end of the module (arbitrary units). The spikes are due to the shuffles.

Harmonic sums with all the same index decompose algebraically into a polynomial of
single harmonic sums. It is easily shown that the algebraic relations [37] always allow to
write any harmonic sum in terms of polynomials of S1(N) and sums, which converge in
the limit N → ∞. All the above greatly reduces the number of shuffle equations that have
to be evaluated. Because this evaluation is one of the expensive steps, it speeds up the
program significantly. On the other hand, it is only an observation made in runs that do
not involve the greatest weights. For the more critical runs7 we have left these equations
active and spent the extra computer time.

The above describes the basic program. At this point we split it in several varieties. To
first determine whether shuffles and stuffles are sufficient to reduce all MZVs to a basis
of the conjectured size, we have made the simplifications:

• All products of lower weight objects are set to zero. This means we will only
determine whether reduction to a Lyndon basis takes place.

• We work modulus a 31-bit prime.

We have also made runs over the rational numbers. This becomes only problematic for
the very highest values of the weight.

For constructing tables of all sums at a given weight we run the full program. The
performance of the program is shown in Figure 1 for a complete run at weight w = 21
and a run to depth d = 8 at weight w = 26. We see that the stuffles give a steady growth

7With this we mean the programs that determine the size of the basis when using arithmetic over a
prime number. Once we have established this, any further runs to for instance determine all values over the
rational numbers, we can safely drop these equations.
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of the master expression but that the shuffles cause intermediate expression swell which
is worse when the depth is much less than half the weight. The result is that when we
run the complete system most time is spent with the stuffle relations while for the limited
depth runs by far most time is spent with the shuffle relations.

In the case of Euler sums the master expression is created with a three letter alphabet
(−1,0,1) rather than the two letter alphabet (0,1) for the MZVs. In addition there are
many more equations to consider because the number of lower weight objects that we can
multiply either by shuffles or stuffles is correspondingly greater. Of course also for the
Euler sums it is possible to just study the basis.

In addition it is possible to study sums to a limited depth. This way we can go to much
greater values of the weight. This is of course only possible if we use a basis in which the
concept of depth is relevant, like the basis of the odd negative indices that form a Lyndon
word. Without such a basis the calculations become much harder.

When we are constructing tables we cannot go quite as far in weight as when we are
determining rank deficiency. When we use a Lyndon basis, the majority of terms consists
of products of basis elements of lower weights. This means that we have many more
terms to carry around. We observe, in addition, that the coefficients containing the most
digits are in the terms with powers of ζ2. This is to be expected since ζN

2 is our repository
for all terms of the form ζm

2aζn
2b with N = ma+nb.

The representation we have selected, together with the modular arithmetic, makes for
a very fast treatment of the terms. This is reflected in the number of terms that can be
processed. In one run, which took more than 30 days the program generated a total of
more than 7 ·1012 terms. This seems to be a new record.

6 The Running of the Programs

We have used the programs of the previous Section to obtain results to as high a weight
and depth as possible, both for MZVs and Euler sums. Before we start discussing these
results we show the parameters of these runs to give the reader an impression of what is
available and why there are limitations to obtain more.

We start with the Euler sums. We have first run the complete system for the given
weights, see Table 7. This means that for w = 12 there are expressions for all 236196
Euler sums with that weight, all expressed in terms of the basis of Lyndon words of the
negative odd integers, see Appendix A, which is the basis we use for all Euler sums,
unless mentioned differently.

The columns marked ‘variables’ mentions how many variables there are at the start
of the program. ‘Remaining’ tells how many basis elements remain in the end. Under
‘output’ we give the size of the output expression in text format. The column ‘size’ refers
to the largest size of the master expression during the calculation. Time refers to real time
to run the program. If the column ‘CPU time’ is present it refers to the total CPU time by
all processors. We notice that computer time is not the issue here, see Table 78. The size

8The first time we ran the w = 12 case on an 8-core Xeon machine at 2.33 GHz the run took two full
weeks. It just shows how good a test case this problem is. Both (T)FORM and the MZV program have been
improved greatly during this project.
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w variables eqns remaining size output time [sec]
4 36 57 1 4.3K 2.0K 0.06
5 108 192 2 21K 8.9K 0.12
6 324 665 2 98K 42K 0.37
7 972 2205 4 472K 219K 1.71
8 2916 7313 5 2.25M 1.15M 7.78
9 8748 23909 8 11M 6.3M 50

10 26244 77853 11 58M 36M 353
11 78732 251565 18 360M 213M 3266
12 236196 809177 25 3.1G 1.29G 47311

Table 7: Runs on an 8-core Xeon computer at 3 GHz and with 32 Gbytes of memory. The
column ‘eqns’ gives the number of equations that was considered.

weight constants running time [sec] output [Mbyte]
9 956 7 0.26

10 1412 13 0.64
11 1996 24 1.25
12 2724 39 3.18
13 3612 68 5.04
14 4676 108 17.1
15 5932 199 17.1
16 7396 436 71.1
17 9084 602 54.9
18 11012 1323 275.9
19 13196 2761 157.1
20 15652 5424 877
21 18396 14090 395
22 21444 21875 2559

Table 8: Summary of the runs at d = 4. The runs were performed on a computer with 8
Xeons at 3 GHz, using TFORM.

of the results becomes the major problem. This is one of the reasons why we stopped at
w = 12. Technically the run at w = 13 is feasible as it should take of the order of 10 days.
The output is, however, projected at almost 8 Gbytes which we considered excessive.

We have also run programs that go to a maximum value of the depth. This involves
only a subset of the Euler sums of that weight and hence such programs are much faster.
As a consequence we can go to much greater values of the weight.

In Table 8 we show the statistics of the runs up to depth d = 4. These are full runs in
the sense that they are over the rational numbers and we have kept all terms, including the
products of lower weight objects.

The dependence on the parity of the weight for the higher values is due to the fact that
we run up to an even depth and the independent variables we use have an even depth for
even weights and an odd depth for odd weights. This means for instance that the depth

31



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

weight constants remaining running time [sec] output [Mbyte]
9 3394 7 27 1.15

10 5702 7 72 3.11
11 9042 13 172 8.5
12 13686 11 478 20.9
13 19938 22 1330 68.9
14 28134 17 4306 133
15 38642 35 27607 473
16 51862 24 110336 688
17 68226 55 450462 2767

Table 9: Summary of the runs at d = 5. Same computer as used in Table 8.

weight constants running time [sec] output [Mbyte]
14 4676 35 1.3
16 7396 105 2.9
18 11012 323 6.0
20 15652 939 11.3
22 21444 2211 20.5
24 28516 5335 35
26 36996 13127 57
28 47012 47056 89
30 58692 100813 137

Table 10: Summary of the runs at d = 4 in modular arithmetic, dropping all terms that are
products of lower weight objects.

4 objects for weight w = 17 can all be expressed in terms of depth d = 3 objects. The
results for the depth 5 runs are summarized in Table 9.

We have a nice example here of what happens if we change the order in which we deal
with the shuffles and the stuffles. We reran the program of Table 9 for the weights w = 14
and w = 15 under these conditions, obtaining running times of 100973 and 493489 sec
respectively. This is more than an order of magnitude slower than the order we select in
the regular programs.

Because we like to compare results of the MZV runs with those of the Euler runs to
as high a weight as possible we made also runs in which we do all calculus modulus a
31-bit prime number. The number we selected is 2147479273. We never ran into a case in
which this seemed to cause problems. In the programs in which we used this modulus we
also dropped all terms that are products of lower weight objects. This means that in the
end all sums are expressed into elements from the same-weight Lyndon part of the basis
only. Such programs are much faster. This can be seen in Tables 10, 11 and 12 which are
for depth d ≤ 4, depth d ≤ 5 and depth d ≤ 6, respectively.

The run at w = 18,d = 6 deserves some special attention. It was our most costly run
and during the running TFORM processed more than 7 ·1012 terms.

We come now to our runs for the Multiple Zeta Values. Those runs look more spec-
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weight constants running time [sec] output [Mbyte]
13 16812 388 5.5
15 33388 2932 18
17 60044 18836 53
19 100236 118874 131
21 157932 554870 299

Table 11: Summary of the runs at d = 5 in modular arithmetic, dropping all terms that are
products of lower weight objects.

weight constants remaining running time [sec] output [Mbyte]
13 56940 22 2611
14 90564 37 12716 51
15 138636 35 55204 87
16 205412 66 206951 214
17 295916 55 789540 288
18 416004 109 2622157 711

Table 12: Summary of the runs at d = 6 in modular arithmetic, dropping all terms that are
products of lower weight objects. Times refer to an 8 Xeon core machine at 3 GHz and
32 GBytes of memory.

tacular because there is much more literature on them. First we present the ‘complete’
runs in which all calculus is over the rational numbers and all terms are kept, cf. Table 13.

‘Rat’ is the real time of this run divided by the real time of a run with a 31-bit prime
number dropping also products of lower weight objects. Together with the numbers in the
‘num’ column it shows that making several runs modulus a 31-bit prime and then using
the Chinese remainder theorem [53], will not be efficient. We would need at least 12
runs for the w = 22 case and even then we have to account for dropping the lower weight
terms.

We indicate the maximum value of the depth which, due to the duality relation for
MZVs, is sufficient to obtain all MZVs at the given weight.

The basis in which these results are presented is described in Appendix B. If we let the
program select the basis, the outputs are shorter but from the viewpoint of basis elements
selected there is less structure.

The next sequence of runs is performed using in modular arithmetic in which we refer
to the same 31-bit prime number as before. Again we run the full range of depths needed
to obtain all sums. As usual in modular runs, we drop the products of lower weight
objects. The results are given in Table 14.

The output of the run at w = 23 gives the results for 220 MZVs expressed in terms of
the 28 same-weight elements of a Lyndon basis selected by the program.

In Table 15 we give the statistics of runs to a more restricted depth. If the conjecture
[13] is correct the runs at w = 25,26 should still give us a complete basis. In the higher
runs some elements will be missing.

We would have liked to have a run for depth d ≤ 9 at w = 27, but it would probably
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w d G size output num CPU[sec] real[sec] Eff. Rat.
16 8 128 11M 7M 22 289 56 5.16 0.99
17 8 256 30M 21M 19 677 129 5.25 0.96
18 9 256 88M 64M 29 3071 517 5.94 1.11
19 9 512 224M 182M 28 6848 1206 5.68 1.00
20 10 512 790M 558M 36 44883 6834 6.57 1.42
21 10 1024 1766M 1821M 40 86318 13851 6.23 1.12
22 11 1024 8856M 5927M 46 1572605 208972 7.53 3.18

Table 13: Runs on an 8-core Xeon computer at 3 GHz and with 32 Gbytes of memory.
‘Num’ indicates, for the final expressions, the maximum number of decimal digits in
either a numerator or a denominator. ‘Eff.’ is the ratio of CPU time versus real time
indicating how well the processors are used. The meaning of the column labeled ‘Rat.’ is
explained in the text. The anomaly between size and output for w = 21 is due to the fact
that the output is in text and size is in FORM binary notation.

w G size output CPU[sec] real[sec] Eff.
16 128 1.7M 1.2M 300 57 5.25
17 256 5.6M 3.2M 713 134 5.32
18 256 14.4M 7.2M 2706 465 5.82
19 512 39M 19M 6901 1206 5.72
20 512 104M 45M 30097 4819 6.25
21 1024 239M 114M 75302 12379 6.08
22 1024 767M 280M 449202 65644 6.84
23 2048 2.17G 734M 992431 151337 6.56
24 2048 8.04G 1.77G 9251325 1268247 7.29

Table 14: Runs on an 8-core Xeon computer at 3 GHz and with 32 Gbytes of memory.
G is the size of the group used in the Gaussian elimination, ‘size’ is the maximum size
of the master expression during the run, ‘output’ is the size of the master expression in
the end, CPU is the total CPU time of all processors together in seconds, ‘real’ denotes
the elapsed time in seconds and ‘Eff.’ is the pseudo efficiency, defined by the CPU time
divided by the real time.
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w D G size output CPU[sec] real[sec] Eff.
23 7 2048 1.55G 89M 61447 9579 6.41
24 8 2048 673M 380M 536921 72991 7.36
25 7 4096 6.37G 244M 369961 50197 7.37
26 8 4096 38.3G 1160M 4786841 651539 7.35
27 7 6144 12.7G 914M 2152321 277135 7.77
28 6 6144 2.88G 314M 235972 30960 7.62
29 7 6144 41.0G 3007M 8580364 1112836 7.71
30 6 6144 6.27G 658M 829701 106353 7.80

Table 15: Runs on an 8-core Xeon computer at 3 GHz and with 32 Gbytes of memory. D
indicates the maximum depth (see text). We reran at w = 23 and w = 24 to have informa-
tion for extrapolation purposes.

take more than a year with current technology. A run for depth d ≤ 8 at w = 28 will
require a smaller CPU time. The reason why these runs are interesting is explained in
Section 10 on pushdowns. They may give us a new type of basis element that would
indicate a double pushdown.

The outputs of all of the above runs are collected in the data mine, together with some
files in which the results have been processed to make them more accessible.

At the end of this Section we would like to discuss the status of the general investi-
gation of MZVs and Euler sums in the foregoing literature. The relations between MZVs
were studied both by mathematicians and physicists. An early study is due to Gastmans
and Troost [54], which gave a nearly complete list for the Euler sums of w = 4 and many
relations for w = 5, supplemented in [11] later. Various authors, among them D. Broad-
hurst, to w = 9, and D. Zagier, performed precision numerical studies [55] using PARI [56]
during the 1990’s for MZVs, which were not published. A very far-reaching investiga-
tion concerned the study of some of the MZVs at w = 23 and depth d = 7 by Broad-
hurst by numerical techniques (PSLQ). Double sums were studied in [57] using the PSLQ
method [15]. Vermaseren both studied the MZVs and the Euler sums to w = 9 [10] using
a FORM program [21]. This was the situation around the year 2000, when the Lille group
presented their w = 12 results for the MZVs and w = 7 results for the Euler sums [58]. In
Ref. [59] the solution of w = 8 for the Euler sums is mentioned by the Lille–group. How-
ever, the data-tables made available [58] only contain the relations to w = 7. Moreover,
the relations used in [59] do not cover the doubling relation, which is needed to reduce
to the conjectured basis at this weight, as will be shown later. For the MZVs w = 10 had
been solved in [60] and w = 13 in [61], cf. [62]. Vermaseren could extend the MZVs to
w = 16 [63]. Studies for w = 16 were also performed at Lille [64] without making the
results public. In the studies by Vermaseren also the divergent harmonic sums ζ1,�a were
included, as this is sometimes necessary for physics applications, cf. also [11].

The primary goal in this paper is to derive explicit representations of the MZVs over
several bases suitable to the respective questions investigated. If one only wants to de-
termine the size of the basis one may proceed differently, cf. [50]. Here for w = 19 in
the MZV case it was shown, that the basis has the expected length, but modulo powers
of π2 at even weights. In [51] the case w = 20 was studied determining the size of the

35



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

basis calculating the rank of the associated matrix modulo a 15-bit prime. Although the
computation times are not excessive, higher weights could not be investigated yet because
of memory limitations. Since these methods are based on the respective algebra only they
can be extended to colored multiple zeta values by extending the underlying alphabet.

7 The Data Mine

The results of our runs, together with a number of FORM programs to manipulate them and
clarifying text, are available on the internet in pages that we call the MZV data mine. It
can be located as a link in the FORM home page [65]. Here we will describe the notations
and how to use the programs.

The notations we use in the data mine are that the MZVs are represented either by a
function Z of which the variables are its indices or by a single symbol that consists of a
string of objects of which the first character is the letter z and the remaining characters
are decimal digits. Each of these strings refers to an index of the MZV. Let us give an
example :

z11z3z3 = Z(11,3,3)

For the Euler sums we use mostly the function H. It can have positive and negative indices,
the negative ones indicating alternating or Euler sums. When we use basis elements a
compact notation is the letter h followed by a number of alphabetic characters or dig-
its. Each character stands for a negative index. The digits 1, · · · ,9 stand for the indices
−1, · · · ,−9 and the upper case characters A, · · · ,Z stand for the indices −10, · · · ,−35.
We had no need to go further in this notation. The next example should illustrate this:

hL33 = H(-21,-3,-3).

If there is ever any doubt about which variable indicates which object one can look in the
corresponding library file (always included as a file with the extension .h in the directory
in which the integrals reside) in the procedure ‘frombasis’.

For reasons of economy9 the H-functions with a single negative index have a different
notation. They are related to the constants ηk defined by

ηk =
(

1− 1
2k−1

)
ζk . (7.1)

In the program we call these constants e3,e5,....
In some cases we use a variable with a notation similar to the notation for the MZVs,

except for that the character z is replaced by the character a.

aiajak = A(i,j,k)
= Z(i,j,k)+Z(-i,j,-k)+Z(i,-j,-k)+Z(-i,-j,k)
= H(i,j,k)-H(-i,j, k)-H(i,-j, k)+H(-i,-j,k)

9It turns out that the number of digits in the fractions is somewhat smaller in η-notation than in ζ-
notation.
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Here A is the function defined in (10.3).
In exceptional cases we refer to Z-functions with negative indices. The most common

notation for this in the literature is to put a bar over the number. This is however a
notation that cannot be used in programs like FORM. Hence we use negative indices for the
alternating sums there. For the symbolic variables we use the notation for the MZVs but
with the character m between z and the number :

zm11zm3z3 = Z(-11,-3,3) = -H(-11,3,3)

The programs run in what we call integral notation. This means that the master ex-
pression has the index fields of the functions E, H and HH10 in terms of the three letter
alphabet {0,1,−1} for Euler sums and the two letter alphabet {0,1} for MZVs. This is
then the way the outputs are presented. Actually, internally the whole string of indices
is put together as one large ternary number for Euler sums and one large binary number
for MZVs. This speeds up the calculation, but makes it virtually impossible to interpret
intermediate results.

The outputs are presented in a method that one may consider unusual. In FORM it is
often more efficient to have one big expression, rather than 220 expressions as would be
the case for the MZVs at w = 23. Hence the output contains functions H with the indices
of the corresponding MZV and each H is multiplied by what this MZV is equal to. In
the case that we fixed a basis this can be an expression that consists of symbols like we
defined above. In the case that we did the calculus modulus a prime and only wanted to
determine a basis, it will be an expression that consists of terms that each contain a single
function HH with its indices in integral notation. These HH functions form the basis. Often
at the end of the program there is a list of the HH functions used. Because FORM will print
the output in such a way that the functions H are taken outside brackets, the contents of
each bracket are what each H function is equal to. With a decent editor it takes very few
(≤ 4) edit commands to convert such output into the definition of 220 table elements.

If this output should be used as input for other systems, this can be done, provided
that the expressions do not cause memory problems. The format is in principle compatible
with Pari/GP, Reduce and Maple. There may be a problem with large coefficients. FORM
does not like to make output lines that are longer than a typical screen width. Hence they
are usually broken up after some 75 characters. This holds also for long numbers. These
are broken off by a backslash character and continued on the next line. The problem is
usually that FORM places some white space at the beginning of the line and some programs
may have problems with that. Hence one can use an editor to remove all white space
(blanks and tabs) at the beginning of the lines.

The data mine consists of several parts. The main part is formed by the different
data sets. The remainder files give information about how to use the data mine and links
to other useful information and/or programs. The data are divided over a number of
directories, each containing the results of one type of runs for a range of values of the
weight. In each directory there are several types of files again. The log–files of the runs
are stored. These contain the run time statistics and the output of the runs in text format.

10The function HH is the same as the function H. We need two different names because when we present
the results the function H marks the brackets and the function HH marks the remaining basis elements.
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Then there are the table files. They are in text format and contain table definitions for
FORM programs. Their extension is .prc as in mzv21.prc. Some of these files have
been split into several files because they become much to big to be handled conveniently.
These tables can be read and compiled. Yet the case of the MZVs at w = 22 with its
nearly 6 Gbytes can be too large for a system with ‘only’ 16 Gbytes. If one does not have
a bigger machine to ones disposal, one should use either the binary .sav file or the .tbl
file defined below.

The third type of files are the binary .sav files. They can be used to read in the
complete tables without having to go through the compiler and without having to load
the complete table as table elements (which needs also big compiler buffers). Finally we
have created so-called tablebases which allow very fast access to individual elements. A
tablebase is a type of database for large tables. They are particular to FORM and have
been used with great success in a number of very large calculations. Their working is
explained in Ref. [66] and the FORM manual. The tablebase files have traditionally the
.tbl extension.

In each directory we have also the programs that were used to create the various files
and in some cases some example programs.

There is another section in the data mine that contains pages in which it is explained
how to manipulate the information in the files. Although many files are in text format it is
not easy to manipulate a 4 Gbyte text file and hence it might become necessary to either
use FORM and one of the binary files, or to use the STedi editor which has been used to
manipulate these files on a computer with 16 Gbytes of main memory. Links are set to
these programs. FORM programs are provided for the most common manipulations of the
data. They contain much commentary. This should make it easy for the user to customize
the programs should the need arise. The data mine is located at
http://www.nikhef.nl/∼form/datamine/datamine.html. Its structure is given in
Figure 2 :
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depth 3 W <= 29

depth 4 W <= 22
rational

depth 5 W <= 17

alldepth W <= 12

Euler

modular

depth 4 W <= 30

basis depth 5 W <= 21

depth 6 W <= 18

datamine

complete W <= 22

modular W <= 24MZV

limited W <= 30

programs

other things

Figure 2: Layout of the data part of the data mine.

In this figure we use the following names:

complete Complete expressions over the rational numbers.
modular Products of lower weight terms are dropped and the computation is

performed modulus a large prime.
limited As modular but incomplete bases.
rational Complete expressions over the rational numbers.
other things Conventions, publications, help, links, etc.

The main problem with the data mine is its size. Many files are several Gbytes long. We
have used bzip2 on most files, because it gives a better compression ratio than gzip, even
though it is much slower, both in compressing and decompressing. But even with bzip2
the combined files are larger than 30 Gbytes.

All programs are FORM (or TFORM) codes. They will run with the latest versions of
FORM (or TFORM). The executables of FORM can be obtained from the FORM web site:
http://www.nikhef.nl/∼form. Please remember the license condition: if you use
FORM (or TFORM) for a publication, you should refer to Ref. [21].
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8 FORM Aspects

As mentioned the running of the programs used posed great challenges for FORM and
TFORM. This is not simply a matter of whether the system contains errors. It is much
more a matter of whether the system deals with the problem in a sensible and efficient
way. Where are the bottlenecks? What is inefficient? A clear example is the conversion
between sum notation and integral notation. This can be programmed in one line:

repeat id H(?a,n?!{-1,0,1},?b) = H(?a,0,n-sig_(n),?b);

for going to integral notation and

repeat id H(?a,0,n?!{0,0},?b) = H(?a,n+sig_(n),?b);

for going to sum notation. It turns out that when one goes to large weights (for instance
more than 20), this becomes very slow because it involves very much pattern matching.
Considering also that the use of harmonic sums is becoming more and more popular it
was decided to built two new commands in FORM for this transformation:

ArgImplode,H;
ArgExplode,H;

The first one converts H to sum notation and the second one to integral notation. This
made the program noticeably faster and easier to read.

Another addition to FORM concerns built-in shuffle and stuffle commands. One of the
problems with shuffles is that the simple programming of it usually gives many identical
terms. This means that the shuffle product of two MZVs can become very slow, which is
illustrated by the following little program:

S n1,n2;
CF H,HH;
L F = H(3,5,3)*H(6,2,5);
ArgExplode,H;
Multiply HH;
repeat;

id HH(?a)*H(n1?,?b)*H(n2?,?c) =
+HH(?a,n1)*H(?b)*H(n2,?c)
+HH(?a,n2)*H(n1,?b)*H(?c);

endrepeat;
id HH(?a)*H(?b)*H(?c) = H(?a,?b,?c);
.end

Time = 37.38 sec Generated terms = 2496144
F Terms in output = 2146

Bytes used = 63176

By putting much combinatorics in the built-in shuffle statement we could solve most of
these problems (although not all as the combinatorics can become very complicated).
With the shuffle command the program becomes:
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S n1,n2;
CF H,HH;
L F = H(3,5,3)*H(6,2,5);
ArgExplode,H;
Shuffle,H;
.end

Time = 0.01 sec Generated terms = 5163
F Terms in output = 2146

Bytes used = 63176

This is a great improvement of course.
For the stuffle product things are much easier. There we have the complication that

there are two definitions. One is the product used for the Z-sums and the other is the
product used for the S-sums. We have resolved that by appending a + for the Z-notation
and a - for the S-notation:

stuffle,Z+;
stuffle,S-;

Not only did this make the program significantly faster, it also made it more readable.
This way the stuffle product of two Euler sums in integral notation becomes in princi-

ple (assuming that we are in integral notation):

ArgImplode,H;
#call convertHtoZ(H,Z)
Stuffle,Z+;
#call convertZtoH(Z,H)
ArgExplode,H;

except for that in the actual program we substituted the contents of the two conversion
procedures. Of course for MZVs the conversions are not needed and we can use just:

ArgImplode,H;
Stuffle,H+;
ArgExplode,H;

A third improvement concerns the parallelization. The original parallelization of
TFORM [22] assumed the treatment of a single large expression of which the terms are
distributed over the workers and later gathered in by the master. During the phase in
which we execute a Gaussian elimination inside a group of identities, this is very inef-
ficient, because we deal with many small expressions, each giving a certain amount of
overhead when they are distributed over the worker threads. Hence it was decided to cre-
ate a new form of parallelization in which the user tells the program that there are many
small expressions coming. The reaction of the master thread is now to divide the expres-
sions over the workers. It only has to tell each worker which expression to do next, after
which the worker is responsible for obtaining its input and writing its output. The only
remaining inefficiencies are that the writing of the output causes a traffic jam because
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that has to be done sequentially. The final results are kept in principle in a single file or
its cached version. Additionally, there may be some load balancing problem in the end.
This load balancing becomes rapidly less when the size of the groups of equations that is
treated becomes bigger. The running of this phase of the program can give nearly ideal
efficiencies.

A fourth improvement concerns the fact that very lengthy programs run a risk of dis-
continuity. This could be a power failure or a sudden urge of the service department to
‘update’ the system, etc. For this a facility has been implemented inside FORM that allows
one to make ‘snapshots’ of the current internal state, cf. [67]. At a later moment one can
then restart from the point of the snapshot. The completion of this facility came however
too late to have a practical impact for this paper.

The possibility to perform the calculus modulus a prime number has existed in FORM
since its first version. Much of it remained untested because these facilities had not been
used extensively. It turned out to be necessary to redesign parts of it and add a few new
features.

Other aspects of TFORM performed amazingly well. We have seen the program running
with eight workers who all eight had to enter the fourth stage of the sorting simultane-
ously. This is rather rare even for single threads and only happens for very large expres-
sions. It gives a bit of a slow down due to the great amount of disk accesses, but it all
worked without any problems. The most impressive single module result observed was

Time = 15720.03 sec Generated terms =1202653196013
FF Terms in output = 1508447974

substitution(7-sh)-7621 Bytes used = 36215474400

The execution time is that of the master. Actually the master spent 1000 CPU sec on this
step and the eight workers each almost 200000 CPU sec.

One may wonder about the probability that calculations, done with a system under
development, give correct answers. We have several remarks concerning this topic:

• Whenever FORM failed, it was always in a very obvious way, like crashing because
it couldn’t interpret something.

• The full all-depth outputs from the MZVs up to w = 22 and the Euler sums up
to w = 12 have been tested numerically by completely independent programs, run
under PARI-GP [56].

• Because of both TFORM and the MZV programs being under development many
programs have been run at least several times with different configurations and/or
different orders of solving the equations.

• TFORM operates in a rather non-deterministic fashion. Terms are rarely distributed
twice in the same way over the workers because the master serves the workers when
they have finished a task and this is usually not in the same order. In the case of
errors this would lead to different results in different runs.

• There are effects that are expected on the basis of extrapolation, like the pushdowns
and the construction of a basis. If anything goes wrong, such effects are absent.
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• If for instance a term gets lost in a calculation over the rational numbers, usually the
output would have terms with fractions that are abnormally much more complicated
than the others. This is due to the fact that in intermediate stages the coefficients are
usually much more complicated than at the end. Such terms are spotted relatively
easily.

9 Results

Armed with the vast amount of information contained in the data mine we start with
having a look at a number of conjectures in this this field. They concern the number
of basis elements, either just as a function of the weight or as a function of weight and
depth. We first check some conjectures made in the literature using the data mine and
then describe the selection of the basis to represent the Euler sums and MZVs in the data
mine.

9.1 Checking some Conjectures with the Data Mine

Zagier conjecture [2]:
The number of elements in a Lyndon-basis for the MZVs at weight w is given by
Eq. (A.13). �

As far as we can check, the Zagier conjecture holds to weight 22. Assuming that in the
modular calculus no terms were lost due to spurious zeroes, we can say that it holds to
weight 24. With the additional assumption that all (Lyndon) basis elements have a depth
of at most one third of the weight we can even say that it holds to weight 26. If we com-
bine the findings in the thesis of Racinet [68] that there may be 2 basis elements of depth 9
for weight 27 with our runs to depth 7, the Zagier conjecture holds also at weight 27. This
conjecture is in accordance with the upper bound for the size of the basis being derived in
Refs. [14].

Hoffman conjecture [69]:
A Fibonacci-basis for the MZVs at a given weight w is formed out of MZVs the index set
of which is formed out of all words over the alphabet {2,3}. �

We could test the basis conjectured by Hoffman up to weight w = 22. If we take the sub-
variety in which we only look at the Lyndon words made from the indices 2 and 3, we can
even verify this Lyndon basis to weight 24. Because this basis is not centered around the
concept of depth, we cannot use the partial runs at larger weights and limited depths for
further validation.

Broadhurst conjecture [12]:
The number of basis elements of the Euler sums at fixed weight w and depth d is given by
Eq. (3.4). �

All our runs for Euler sums are in complete agreement with the Broadhurst conjecture
about the size and the form of a basis for these sums. This means complete verification
up to weight 12, for depth 6 verification (in modular arithmetic) to weight 18, for depth
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5 complete verification to weight 17 and modular verification to weight 21. For depth 4
these numbers are weight 22 and weight 30 respectively.

Broadhurst-Kreimer conjectures [13]:
The number of basis elements of the MZVs at fixed weight w and depth d is given by
Eq. (3.5). The number of basis elements for MZVs when expressed in terms of Euler
sums in a minimal depth representation is given by Eq. (3.6) �

The runs for the MZVs confirm this conjecture over a large range, cf. Tables 16, 17. The
second part of the conjecture is harder to check than the first part, because for this we
need the results for the corresponding Euler sums.

Another conjecture by Hoffman [3]:

H2,1,2,3 −H2,2,2,2 −2H2,3,3 = 0 (9.1)

H2,1,2,2,3 −H2,2,2,2,2 −2H2,2,3,3 = 0 (9.2)

H2,1,2,2,2,3 −H2,2,2,2,2,2 −2H2,2,2,3,3 = 0 (9.3)

H2,1,2,2,2,2,3 −H2,2,2,2,2,2,2 −2H2,2,2,2,3,3 = 0 (9.4)

H2,1,{2}k,3 −H{2}k+3
−2H{2}k,3,3 = 0 � (9.5)

We verified these relations up to weight w = 22. At w = 24 we checked the weight-24
part, since we have only the modular representation at this level.

There are identities for special patterns of indices as

2ζm,1 = mζm+1 −
m−2

∑
k=1

ζm−kζk+1, 2 ≤ m ∈ Z , (9.6)

cf. [1, 4] or

ζ{3,1}n
=

1
2n+1

ζ{2}n
=

1
4n ζ{4}n

=
2π4n

(4n+2)!
, (9.7)

conjectured in [2] and proven in [47]. Another relation is

ζ2,{1,3}n =
1
4n

n

∑
k=0

(−1)kζ{4}n−k

{
(4k +1)ζ4k+2 −4

k

∑
j=1

ζ4 j−1ζ4k−4 j+3

}

(9.8)

conjectured in [19] and proven in [70]. For the Euler sums one finds, [71],

ζ{3}n
= 8nζ{−2,1}n

. (9.9)

In Ref. [19] conjectures were given for special cases based on PSLQ,

ζ{4,1,1}2
=

3π4

16

[
ζ6,2 −4ζ5ζ3

]− 41π6

5040

[
ζ2

3 −
77023π6

14414400

]
+

397
8

ζ9ζ3 +ζ4
3

(9.10)

ζ2,2,1,2,3,2 =
75π2

32

[
ζ8,2 −2ζ7ζ3 +

34
225

ζ2
5 +

4528801π10

61297236000

]
− 825

8
ζ7ζ5 , (9.11)
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w /d 1 2 3 4 5 6 7 8 9 10
1
2 1
3 1
4
5 1
6 0
7 1
8 1
9 1 0

10 1
11 1 1
12 1 1
13 1 2
14 2 1
15 1 2 1
16 2 3
17 1 4 2
18 2 5 1
19 1 5 5
20 3 7 3
21 1 6 9 1
22 3 11 7
23 1 8 15 4
24 3 16 14 1
25 1 10 23 11
26 4 20 27 5
27 1 11 36 23 2
28 4 27 45 16
29 1 14 50 48 7
30 4 35 73 37 2

Table 16: Number of basis elements for MZVs as a function of weight and depth in
a minimal depth representation. Underlined are the values we have verified with our
programs.
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w/d 1 2 3 4 5 6 7 8 9 10
1
2 1
3 1
4
5 1
6
7 1
8 1
9 1

10 1
11 1 1
12 2
13 1 2
14 2 1
15 1 3
16 3 2
17 1 5 1
18 3 5
19 1 7 3
20 4 8 1
21 1 9 7
22 4 14 3
23 1 12 14 1
24 5 20 9
25 1 15 25 4
26 5 30 20 1
27 1 18 42 12
28 6 40 42 4
29 1 22 66 30 1
30 6 55 75 15

Table 17: Number of basis elements for MZVs as a function of weight and depth when
expressed as Euler sums in a minimal depth representation. Underlined are the values we
have verified with our programs.
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which we verified. A series of special relations for the Euler sums were conjectured
in [19] based on PSLQ :

ζ2,1,−2,−2 =
39

128
ζ4ζ3 − 193

64
ζ5ζ2 +

593
128

ζ7 (9.12)

ζ−2,−2,1,2 =
9

128
ζ4ζ3 +

447
128

ζ5ζ2 − 1537
256

ζ7 (9.13)

ζ{−3,1}2
= −7

[
α5 − 39

64
ζ5 +

1
8

ζ4 ln(2)
]

ζ3 +
[

2α4 − 1
4

ζ4

]2

+2

[
α4 − 15

16
ζ4 +

7
8

ζ3 ln(2)
]2

− 1
32

ζ8 . (9.14)

Here

αn = Lin(1/2)+(−1)n

[
lnn(2)

n!
− ζ2

2
ln(n−2)(2)
(n−2)!

]
. (9.15)

These relations are verified analytically as well by our data base. Relations (9.10–9.13)
were also obtained in [58].

In Ref. [12] a series of relations was conjectured for weight w = 8 ...12 and d = 3,4 for
Euler sums being related to values ζ−|a1|,−|a2|.

ζ3,−3,−3 = 6ζ5,−1,−3 +6ζ3,−1,−5 − 315
32

ln(2)ζ3ζ5 +6ζ−5,−1ζ3
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+
40005

128
ζ2ζ7 − 39

64
ζ3

3 +
1993
256

ζ3ζ6 +
8295
128

ζ4ζ5 − 226369
384

ζ9,

(9.16)

ζ3,−5,−3 =
1059

80
ζ5,3,3 +15ζ7,−1,−3 +15ζ3,−1,−7 +

701
69

ζ−5,−3ζ3

+ 15ζ−7,−1ζ3 − 6615
256

ln(2)ζ3ζ7 − 11852967
2560

ζ11 +
301599

128
ζ2ζ9

− 124943
5888

ζ2
3ζ5 +

1753577
35328

ζ3ζ8 +
2960103

5120
ζ4ζ7 +

3405
32

ζ5ζ6,

(9.17)

ζ3,−1,3,−1 =
61
27

ζ−3,−3,−1,−1 − 14
3

ζ−5,−1,−1,−1 − 185
27

ζ−5,−1ζ2

− 163499
22356

ζ−5,−3 +
2051
54

ζ−7,−1 +
28
9

ln2(2)ζ−5,−1 +
35
96

ln2(2)ζ2
3

− 581
64

ln2(2)ζ6 − 8735
576

ln(2)ζ2ζ5 − 903
64

ln(2)ζ3ζ4

− 1441
288

ζ2ζ2
3 +

10365875
476928

ζ3ζ5 +
36916435
1907712

ζ8. (9.18)

25 ·33ζ4,4,2,2 = 25 ·32ζ4
3 +26 ·33 ·5 ·13ζ9ζ3 +26 ·33 ·7 ·13ζ7ζ5

+27 ·35ζ7ζ3ζ2 +26 ·35ζ2
5ζ2 −26 ·33 ·5 ·7ζ5ζ4ζ3

−28 ·32ζ6ζ2
3 −

13177 ·15991
691

ζ12

+24 ·33 ·5 ·7ζ6,2ζ4 −27 ·33ζ8,2ζ2 −26 ·32 ·112ζ10,2

+214ζ−9,−3 . (9.19)

These relations were verified using the current data base. Eq. (9.19) is particularly in-
teresting since it implies a relation between MZVs mediated by one term of the kind
ζ−|a1|,−|a2|.

There is a series of Theorems proven on the MZVs, which can be verified using the
data base. We used already the duality theorem [2]. For the MZVs a large variety of
relations has been proven, which can be verified for specific examples using the data
mine.

The first of these general relations is the Sum Theorem, Ref. [1, 72],

∑
i1+...+ik=n,i1>1

ζi1,...,ik = ζn . (9.20)

The sum-theorem was conjectured in [40], cf. [39]. For its derivation using the Euler
connection formula for polylogarithms, cf. [73].

Further identities are given by the Derivation Theorem, [40, 52] Let I = (i1, . . . , ik)
any sequence of positive integers with i1 > 1. Its derivation D(I) is given by

D(I) = (i1 +1, i2, . . . , ik)+(i1, i2 +1, . . . , ik)+ . . .(i1, i2, . . . , ik +1)
ζD(I) = ζ(i1+1,i2,...,ik) + . . .+ζ(i1,i2,...,ik+1) . (9.21)

The Derivation Theorem states

ζD(I) = ζτ(D(τ(I))) . (9.22)
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Here τ denotes the duality-operation (2.23). We call an index-word w admissible, if
its first letter is not 1. The words form the set H0. |w| = w is the weight and d(w)
the depth of w. For the MZVs the words w are build in terms of concatenation prod-
ucts xi1−1

0 x1xi2−1
0 x0...x

ik−1
0 x1. The height of a word, ht(w), counts the number of (non-

commutative) factors xa
0xb

1 of w. The operator D and its dual D act as follows [7],

Dx0 = 0, Dx1 = x0x1, Dx0 = x0x1, Dx1 = 0 .

Define an anti-symmetric derivation

∂nx0 = x0(x0 + x1)n−1x1 .

A generalization of the Derivation Theorem was given in [52, 74] :
The identity

ζ(∂nw) = 0 (9.23)

holds for any n ≥ 1 and any word w∈H0. Further theorems are the Le–Murakami Theo-
rem, [75], the Ohno Theorem, [76], which generalizes the sum- and duality theorem, the
Ohno–Zagier Theorem, [77], which covers the Le–Murakami theorem and the sum the-
orem, and generalizes a theorem by Hoffman [39,40], and the cyclic sum theorem, [78].

Finally, we mention a main conjecture for the MZVs. Consider tuples k =
(k1, . . . ,kr) ∈ Nr,k1 ≥ 1. One defines

Z0 := Q

Z1 := {0}
Zw := ∑

|k|=w

Q ·ζ(k) ⊂ R . (9.24)

If further

ZGo :=
∞

∑
w=0

Zw ⊂ R (Goncharov) (9.25)

ZCa :=
∞M

w=0

Zw (Cartier) (9.26)

the conjecture states

(a) ZGo ∼= ZCa. There are no relations over Q between the MZVs of different weight w.
(b) dimZw = dw, with d0 = 1,d1 = 0,d2 = 1,dw = dw−2 +dw−3.
(c) All relations between MZVs are given by the extended double-shuffle relations [79],
cf. also [80]. If this conjecture turns out to be true all MZVs are irrational numbers.

9.2 Selection of a Basis

Thus far we have not specified which basis we have been using for the MZVs. In first
instance, we actually let the program select the basis. The result was the collection of
remaining elements after elimination of as many elements as possible. The ordering in
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the elimination process was such that the remaining elements would be minimal in depth
and maximal in their sum notation. Hence Z20,2,1,1 would be preferred over Z18,4,1,1. As it
turned out, all remaining elements had an index field which formed a Lyndon word. This
is not really surprising due to the ordering. Unfortunately there was not much systematics
found in these elements.

Next came the idea that if the Euler sums have a basis made out of Lyndon words of
only negative odd indices, maybe one should investigate to which extent one can write a
basis for the MZVs in terms of Lyndon words with positive odd indices only. It turns out
that a number of elements can be selected with odd-only indices, but it is not possible for
the whole basis. A number of basis elements needs at least two even indices.

Definition.
Lw is the set of Lyndon words made out of positive odd-integer indices, with no index
i = 1 at given weight w. �

We observed that Table 17 can be reproduced by basis elements with indices in Lw. As
mentioned, this is not a basis for the MZVs, but if we write as many elements of the basis
as possible as elements of the set Lw, the remaining elements of the basis have a depth
that is at least two greater than the elements that are remaining in the Lw set and need at
least two even indices. Additionally, it looks like that they can be written as an extended
version of these remaining elements by adding two indices 1 at the end and subtracting
one from the first two indices as in

Z7,5,3 → Z6,4,3,1,1 . (9.27)

We have been able to construct bases with these properties all the way up to weight
w = 26. The complete (non-unique) recipe for such bases is:

1. Construct the set Lw of all Lyndon words of positive odd integers excluding one that
add up to w.

2. Starting at lowest depth, write as many basis elements of the basis as possible in

terms of elements of Lw. Call the remaining elements in Lw at this depth R(D)
W .

3. At the next depth, two units larger than the previous one, write again as many basis

elements of the basis as possible in terms of elements of Lw and construct R(D+2)
W .

4. Write the elements of the basis with depth D + 2 that could not be written as ele-

ments of Lw as 1-fold extended elements of R(D)
W .

5. Write the elements of the basis with depth D + 2 that could not be written as el-

ements of Lw or 1-fold extended elements of R(D)
W as 2-fold extended elements of

what remains of R(D−2)
W , etc.

6. If we are not done yet, raise D by two and go back to step 3.

The concept of n-fold extension is defined by subtracting one from the first 2n indices and
adding 2n indices with the value one at the end of the index set.

To illustrate this we give two examples. First the basis at weight w = 12:
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L12 : H9,3 H7,5
P12 : H9,3 H6,4,1,1

and next the basis at weight w = 18 :

L18 : H15,3 H13,5 H11,7 H9,3,3,3 H7,5,3,3 H7,3,5,3 H7,3,3,5 H5,5,5,3
P18 : H15,3 H13,5 H10,6,1,1 H9,3,3,3 H6,4,3,3,1,1 H7,3,5,3 H7,3,3,5 H5,5,5,3

From the basis at weight 18 it should be clear why we put so much effort in obtaining the
results for the Euler sums at weight 18, depth 6.

Because the construction does not tell which elements of Lw to select the results are not
unique. In fact quite a few selections are not possible because of dependencies between
the elements of Lw. Hence the whole procedure requires a certain amount of experiment-
ing before a good basis is found. In Appendix B we have tried to find a basis in which the
elements that are taken from Lw have the highest values when their index set is seen as a
multi-digit number. Because of reasons being explained in the next Section we call these
bases ‘pushdown bases’.

We do not have complete runs for the weights w = 27 and w = 28. In these cases the
elements with the greatest depth are missing. But we can go through the construction as
far as possible and make predictions about the missing elements. It turns out that for both
these weights a 2-fold extension is needed. For weight w = 27 this would be for depth
5 to depth 9 and for weight w = 28 for depth 4 to depth 8. This concept was not taken
into account in the conjectures in Ref. [13]. Hence we formulate a new conjecture that
not only specifies the number of elements for each weight and depth but also how many
elements need how many extensions.

Conjecture 2.
The number of basis elements D(w,d, p) of MZVs with weight w, depth d, and pushdown
p is obtained from the generating function

∞

∏
w=3

∞

∏
d=1

∞

∏
p=0

(1− xwydzp)D(w,d,p) = 1− x3y
1− x2 +

x12y2(1− y2z)
(1− x4)(1− x6)

(9.28)

solving for the coefficients of the monomials xwydzp. �

This formula predicts the first n-fold extension (n > 1) at weight w = 12n +3 and it will
be to depth d = 4n+1. The exception is the first extension at weight 12. We show this in
Table 18.

It is a great pity that with the resources that were at our disposal we just could not
get direct access to a double extension or pushdown. Extrapolating from the numbers in
Table 15 indicates computer times of the order of half a year (for weight 28, depth 8) to
more than a year (for weight 27, depth 9).

10 Pushdowns

As mentioned in the previous Section, there are elements that as MZVs can only be written
with a certain depth, while, when written in terms of Euler sums, can be written with a
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w/d 1 2 3 4 5 6 7 8 9 10
1
2 1
3 1
4
5 1
6 0
7 1
8 1
9 1 0

10 1
11 1 1
12 1 0,1
13 1 2
14 2 1
15 1 2 0,1
16 2 2,1
17 1 4 1,1
18 2 4,1 0,1
19 1 5 3,2
20 3 6,1 1,2
21 1 6 6,3 0,1
22 3 10,1 3,4
23 1 8 11,4 1,3
24 3 14,2 8,6 0,1
25 1 10 18,5 4,7
26 4 19,1 16,11 1,4
27 1 11 29,7 11,12 0,1,1
28 4 25,2 31,14 4,11,1
29 1 14 42,8 25,23 1,5,1
30 4 33,2 52,21 14,22,1 0,1,1

Table 18: Number of basis elements for MZVs as a function of weight, depth and exten-
sion(or pushdown). If there are several numbers, separated by commas, the first indicates
the number of elements that came from Lw, the second the number of 1-fold extensions
from depth d−2, the third the number of 2-fold extensions from depth d−4, etc. A single
number refers to the elements of Lw.
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smaller depth. This phenomenon is called pushdown. The simplest example occurs at
weight w = 12 and can be looked up in the Tables for the Euler sums. It is

Z6,4,1,1 = −2107648
15825

H−11,−1 +
50048
9495

H−9,−3 − 117568
237375

H−7,−5 +
100352

1583
ζ2H−9,−1

−3584
1583

ζ2H−7,−3 +
320
57

ζ2
2H−7,−1 − 64

171
ζ2

2H−5,−3 − 2535128220786914
481025690578125

ζ6
2

+
69528448

427275
η3η9 − 32

35
η2

3ζ3
2 +

64
243

η4
3 −

21236224
299187

η7η3ζ2

−11072
1425

η5η3ζ2
2 +

696654848
4984875

η5η7 − 11690624
356175

η2
5ζ2 , (10.1)

in which we remind the reader that ηn = H−n. The next equation is at weight w = 15 and is
already considerably lengthier. The rhs of Z6,4,3,1,1 contains 49 terms when written in this
form and some of the fractions consist of more than 100 decimal digits. The phenomenon
of these pushdowns seems to be intimately connected with the doubling and generalized
doubling relations. We have investigated this at the weight w = 12 system. This is the
only system over which we have complete control, because we have the full results for
all depths for all Euler sums up to this weight. If we run this system without the use of
the doubling and generalized doubling relations there are three more elements left in the
‘basis’, see Table 5. Two are of depth 4 and one is of depth 2. And additionally there is
no pushdown. The element Z6,4,1,1 = H6,4,1,1 needs one of these extra elements at depth
4. If we use the doubling relations, but we do not use the GDRs, there is only one extra
element of depth 4, but the pushdown does take place. If we use only the GDRs, there are
no remaining elements beyond the regular basis and the pushdown takes place.

Unfortunately we cannot run this test for other weights. Not using the GDRs means
that we cannot run at restricted depth, due to the phenomenon of leakage. Of course it is
rather adventurous to make the statement that doubling is at the origin of the pushdowns,
when we have only a single case, but there is more supporting evidence as we will see
below.

The way we have presented the pushdown in (10.1), although correct, is not its most
transparent form. One can rewrite it to as many MZVs as possible and obtain a much
simpler representation. One can, for instance, write

H−9,−3 =
1055
1024

[
−Z9,3 − 185874

5275
ζ7ζ5 − 37332

1055
ζ9ζ3

+
1024

26375
H−7,−5 +

187392
5275

H−11,−1 +
92649159488
23101203125

ζ6
2

]
. (10.2)

Additionally, we introduce a new function A as

An1,n2,··· ,np−1,np = ∑
±

sH±n1,±n2,··· ,±np−1,np (10.3)

in which the sum is over the 2p−1 possible sign combinations and s = −1 if the number
of minus signs inside H is odd and s = +1 if this number is even as in

A7,5,3 = H7,5,3 −H−7,5,3 −H7,−5,3 +H−7,−5,3 . (10.4)
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Notice that the last index is always positive. In terms of the Z-notation the function A is
the sum over all Z-sums with an even number of negative indices, but the absolute values
of the indices are identical to the indices of the A-function. We rewrite then

H−7,−5 = −25
3

[
−A7,5 +

1295
2304

Z9,3 +
461399
15360

ζ7ζ5 +
3213
128

ζ9ζ3

−126
5

H−11,−1 − 39238805939
12612600000

ζ6
2

]
, (10.5)

and finally the result for the pushdown becomes:

Z6,4,1,1 = −64
27

A7,5 − 7967
1944

Z9,3 +
1

12
ζ4

3 +
11431
1296

ζ7ζ5

−799
72

ζ9ζ3 +3ζ2Z7,3 +
7
2

ζ2ζ2
5 +10ζ2ζ7ζ3

+
3
5

ζ2
2Z5,3 − 1

5
ζ2

2ζ5ζ3 − 18
35

ζ3
2ζ2

3 −
5607853
6081075

ζ6
2 , (10.6)

which is much simpler than equation (10.1). We see the same happening in the expression
for Z6,4,3,1,1,

Z6,4,3,1,1 = +
1408

81
A7,5,3 +

16663
11664

Z9,3,3 +
150481
68040

Z7,3,5 +10ζ3Z6,4,1,1

+
162823

3888
ζ3Z9,3 − 17

20
ζ5

3 −
101437
38880

ζ5Z7,3 − 1520827
38880

ζ3
5

+
1903
120

ζ7Z5,3 − 93619
1296

ζ7ζ5ζ3 +
3601

48
ζ9ζ2

3 −
20651486329

4082400
ζ15

+
14
5

ζ2Z5,5,3 −2ζ2Z7,3,3 −27ζ2ζ3Z7,3 − 21
2

ζ2ζ5Z5,3 − 61
2

ζ2ζ2
5ζ3

−84ζ2ζ7ζ2
3 +

31753363
12960

ζ2ζ13 −4ζ2
2Z5,3,3 −5ζ2

2ζ3Z5,3

+
9
2

ζ2
2ζ5ζ2

3 +
979621

1701
ζ2

2ζ11 +
186
35

ζ3
2ζ3

3 −
490670609

3572100
ζ3

2ζ9

−1455253
283500

ζ4
2ζ7 +

4049341
311850

ζ5
2ζ5 +

12073102
1488375

ζ6
2ζ3 . (10.7)

In both relations there is only a single object in the equation that is not an MZV: the
function A. This means that we can write this A-function alternatively as a combination
of MZVs of which one has a depth d′ = d+2. We have done that with A7,5 to obtain
(10.7), see the fourth term in the right hand side. The intriguing part about it all is that
this function A contains half of the terms on the right hand side of the doubling relation in
equation (2.16). In terms of H-functions it are the terms in which the last index is positive
and in terms of Z-functions it are all terms with an even number of negative indices.

We have been able to construct pushdown relations for all extended basis elements
up to weight w = 21 and one for weight w = 22. Some of these could be constructed
directly from the data mine. The more difficult ones are, however, outside the range
of the files in the data mine. There we could use the data mine as an aid in limiting the
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search with numerical algorithms like LLL or PSLQ. More details are given in Appendix C.
This search for pushdowns is not always as simple as the two examples we gave above.
Sometimes there is more than one pushdown at a given depth, and sometimes there are
elements at a given depth that should be pushed down, but there are also elements that
remain at that depth. In the last case it is usually a linear combination of the extended
element(s) and the remaining element(s) that get(s) pushed down. But for all cases that
we could check there is a single function A associated with each pushed down element. If
there are several pushdowns at a given weight and depth the right hand side may contain
linear combinations of the corresponding A-functions. In all cases we could select the
bases such that the index fields of the A-functions corresponded to the index fields of the
elements of the set Lw that had to be extended.

The above indicates that these A-functions have a special status within the Euler sums.
They are quite similar to the MZVs.

It should be noted that not all A-functions can be written in terms of MZVs only. This
holds only for a limited subset as we will see in the next Section. Additionally, not all
A-functions that can be rewritten in terms of MZVs can be used for pushdowns, because
a number of them can be rewritten in terms of MZVs that have at most the same depth as
the A-function itself.

The above observations lead to the following conjecture:

Conjecture 3.
At each weight w, there exists a set of Lyndon words Lw from which one may construct
a basis for MZVs as follows. For each Lyndon word one chooses either the associated
Z value or the associated A value, with the number of A values chosen to agree with
the Broadhurst-Kreimer conjectures. Linear combinations of these A values then provide
the pushdowns for the extensions of Z values by a pair unit indices, as exemplified in
Appendix C. �

What the above says is that we can find a good basis for the MZVs using the set Lw,
provided we borrow some elements from the Euler sums. In such terms the basis for
weight w = 18 would look like

L18 : Z15,3 Z13,5 Z11,7 Z9,3,3,3 Z7,5,3,3 Z7,3,5,3 Z7,3,3,5 Z5,5,5,3

P18 : Z15,3 Z13,5 A11,7 Z9,3,3,3 A7,5,3,3 Z7,3,5,3 Z7,3,3,5 Z5,5,5,3

11 Special Euler Sums

The discovery of the A-functions brings up a new point. Which Euler sums can be written
as a linear combination of MZVs only? This is of course a perfect question for a system
like the data mine in which exhaustive searches are relatively cheap. At the same time we
ask of course the question which A-functions can be written in terms of MZVs only. We
should distinguish two cases :

• The object can be written in terms of MZVs that have at most the same depth as the
object.
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w/d 2 3 4 5
7 13 9 2 0
8 5 10 8 2
9 19 26 2 0

10 7 22 17 7
11 25 38 6 0
12 9 40 43 13
13 31 62 4 1
14 11 62 77 23
15 37 90 6 3
16 13 90 137 34
17 43 121 6 3

Table 19: Number of Euler sums with at least one negative index that can be rewritten in
terms of MZVs only as a function of weight (w) and depth (d).

w/d 2 3 4 5
7 4 5 2 0
8 5 8 4 0
9 6 13 9 3

10 7 18 17 7
11 8 25 31 17
12 9 32 49 34
13 10 41 74 67
14 11 50 106 116
15 12 61 148 192
16 13 72 198 298
17 14 85 259 449

Table 20: Number of A-functions that can be rewritten in terms of MZVs only as a func-
tion of weight (w) and depth (d).

• The object needs MZVs of a higher depth. This occurs when there is already an
A-function that is used in a pushdown. In that case many other A-functions may be
rewritten in terms of this A-function and MZVs of the same depth or lower depth.

We find that whenever the second case can occur, it will for a large fraction of the A-
functions of that depth. The number of H-functions with at least one negative index that
can be rewritten completely in terms of MZVs is given in Table 19. In Table 20 we
show the same for the A-functions. Here there are clearly many more. Actually a sizable
fraction of the A-functions can be rewritten like this. For example, there are 1365 finite
A-functions of w = 17,d = 5 of which 449 can be rewritten in terms of MZVs only.

Considering that a number of the Euler sums can be rewritten in terms of MZVs only,
one may raise the question whether the pushdowns can be rewritten in such a way that they
do not have the A-functions, but rather have a single Euler sum in their right hand side.
This turned out to be a difficult question to answer, because the pushdown at w = 21,d = 7
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was very time consuming and took several days for each trial. At first the number of
candidates was rather large. We could make a list of candidates in a way, similar to that
of Table 19 for w = 21,d = 5 and see which Euler sums could be expressed in terms of
MZVs and A7,5,3,3,3 which is the object that was used in the pushdown11. Unfortunately
the results for w = 21,d = 5 are in modular arithmetic and without the products of lower
weight objects. Trying several elements of the list gave negative results indicating that
many objects that give only MZVs for the terms with the same weight may have terms that
are products of Euler sums of a lower weight. Then, after constructing Table 19 we looked
for patterns and we noticed that the only eligible elements for w = 13,w = 15,w = 17 are

Z3,−2,3,−2,3 = H3,−2,−3,2,3

Z3,−4,3,−2,3 = H3,−4,−3,2,3

Z3,−2,3,−4,3 = H3,−2,−3,4,3

Z3,−6,3,−2,3 = H3,−6,−3,2,3

Z3,−4,3,−4,3 = H3,−4,−3,4,3

Z3,−2,3,−6,3 = H3,−2,−3,6,3 . (11.1)

Trying to rewrite Z3,−6,3,−6,3 in terms of A7,5,3,3,3 by means of LLL (a 130 elements search)
gave the desired result. Hence by now all pushdowns have been obtained as well in terms
of MZVs as in terms of one single Euler sum only. Unfortunately the index field of these
Euler sums seems to be completely unrelated to the index fields of our basis elements.

12 Outlook

The data mine has given us already much information and it may yield more yet. But the
current results leave also many new questions. To name a few:

• Can the GDRs be derived and/or written in a simpler way?

• Why can the GDRs resolve the problem of ‘leakage’?

• Why do we need the doubling relations at all?

• What is the relation between the doubling formula and the pushdowns?

• Is it possible to see which A-functions can be used for pushdowns without needing
the Euler sums of the data mine?

• Can a pushdown basis be constructed without needing the MZVs of the data mine?

In addition there is some ‘unfinished business’. We did not get more than partial ev-
idence for the double pushdowns at weight 27 and weight 28. Although we can guess
the basis at weight 27, an LLL search for the complete formula would involve more than
800 elements and probably more than 10 times the number of digits than what our current

11Originally we worked with A9,3,3,3,3 and it was only at a very late stage that we converted to A7,5,3,3,3.
Hence a number of the ‘raw’ results still refer to A9,3,3,3,3.
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searches needed. Considering the asymptotic behaviour of the LLL algorithm, this would
mean at least 107 times the computer time we needed for the current determinations. The
data mine approach is also not very attractive. There we would need the Euler sums to
weight 27, depth 9. This might need even more extra orders of magnitude in resources
than for the LLL algorithm. What would be very welcome is an algorithm by which we
can determine a (small) subset of the Euler sums that includes the A-functions and com-
bine this subset with the MZVs. For the MZV part of these double pushdowns things look
much brighter. In modular arithmetic the continuously improving hardware and software
technology should place those runs within reach soon. With a better ordering of the pro-
cessing of the equations, which unfortunately we do not have, the runs could already be
attempted. Again, finding non-trivial subsets to which one might limit oneself, would
immediately lead to great progress as well. We hope, that the empirical discoveries we
made in this paper for harmonic sums up to w = 30 will stimulate mathematical research
and eventually lead to proofs of more far reaching theorems in the future. Here we re-
gard the consideration of the embedding of the MZVs into the Euler sums of importance.
Likewise one may consider colored ‘MZVs’ with even higher roots of unity [81] in the
future, which have not been the objective of this paper.

The data mine will be extended whenever new and relevant results are obtained. there
is a history page that shows additions and corrections. If others have interesting contribu-
tions, they should contact one of the authors.
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A Fibonacci and Lyndon Bases at Fixed Weight

In the past several bases have been considered for both the MZVs and the Euler sums.
In some of these the concept of depth is not relevant and hence for the counting rules
we should sum over the depth. We will discuss those bases in this Appendix. For a
number of these bases conjectures are formulated in the literature, which cannot be broken
down fixing the depth. The counting relation for the MZVs was conjectured in [2, 13]
and [12], respectively.

The vector space of MZVs can be constructed allowing basis elements, which contain
besides the ζ–values the index of which is a Lyndon word products of this type of ζ-values
of lower weight. One basis of this kind is

w = 2 ζ2 (A.1)

w = 3 ζ3 (A.2)

w = 4 ζ2
2 (A.3)

w = 5 ζ5,ζ2ζ3 (A.4)

w = 6 ζ2
3,ζ

3
2 (A.5)

w = 7 ζ7,ζ5ζ2,ζ3ζ2
2 (A.6)

w = 8 ζ5,3,ζ5ζ3,ζ2
3ζ2,ζ4

2 (A.7)

w = 9 ζ9,ζ7ζ2,ζ5ζ2
2,ζ

3
3,ζ3ζ3

2 (A.8)

w = 10 ζ7,3,ζ5,3ζ2,ζ7ζ3,ζ2
5,ζ5ζ3ζ2,ζ2

3ζ2
2,ζ

5
2, etc. (A.9)

The number of these basis elements is counted by the Padovan numbers, P̂k, [43], which
have the same recursion as the Perrin numbers, but start from the initial values P̂1 = P̂2 =
P̂3 = 1. Their generating function is

G(P̂k,x) =
1+ x

1− x2 − x3 =
∞

∑
k=0

xkP̂k . (A.10)

They also obey a Binet-like formula. The first values are given in Table 21.

w 1 2 3 4 5 6 7 8 9 10
P̂w 1 1 1 2 2 3 4 5 7 9

w 11 12 13 14 15 16 17 18 19 20
P̂w 12 16 21 28 37 49 65 86 114 151

w 21 22 23 24 25 26 27 28 29 30
P̂w 200 265 351 465 616 816 1081 1432 1897 2513

Table 21: The first 30 Padovan numbers.

The above basis is of the Fibonacci type. Another basis of the Fibonacci type is the
Hoffman basis [69] which consists of all elements of which the index field is made up
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w 1 2 3 4 5 6 7 8 9 10
Pw 0 2 3 2 5 5 7 10 12 17

w 11 12 13 14 15 16 17 18 19 20
Pw 22 29 39 51 68 90 119 158 209 277

w 21 22 23 24 25 26 27 28 29 30
Pw 367 486 644 853 1130 1497 1983 2627 3480 4610

Table 22: The first 30 Perrin numbers.

from 2’s and 3’s only. If one uses the following construction it is easy to see that the
number of basis elements follows the Padovan sequence.

w = 1 /0
w = 2 (2)
w = 3 (3) . (A.11)

The index words at weight w are given by

Iw = ∪
|a|=(w−2)

(2, Ia) ∪ ∪
|b|=(w−3)

(3, Ib) . (A.12)

Let us now turn to Lyndon bases for the MZVs. Using a Witt-type relation [44] the
size of the basis is conjectured to be given by

l(w) =
1
w ∑

d|w
µ
(w

d

)
Pd ,

P1 = 0,P2 = 2,P3 = 3,Pd = Pd−2 +Pd−3, d ≥ 3 . (A.13)

Here the sum runs over the divisors d of the weight w and Pd denotes the Perrin-
numbers [45, 46]. They are given by the Binet-like formula

Pn = αn +βn + γn, with α, β, γ the roots of

x3 − x−1 = 0 (A.14)

and can be derived from the generating function

G(Pk,x) =
3− x2

1− x2 − x3 =
∞

∑
k=0

xkPk . (A.15)

The first values are given in Table 22.
For the basis different choices are possible, which yield equivalent representations.

Here we choose the basis in terms of ζ–values, with an index field which forms a Lyn-
don word. Our first choice consists of indices, which contain as widely as possible odd
integers. In case of even weights in a series of cases also indices with only even numbers
occur from w = 12 onwards, as e.g. for

w = 18 : ζ15,3, ζ13,5, ζ9,3,3,3, ζ7,5,3,3, ζ5,5,5,3, ζ7,5,5,1, ζ8,2,2,2,2,2, ζ12,2,2,2 . (A.16)
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w 1 2 3 4 5 6 7 8 9 10
lw 0 1 1 0 1 0 1 1 1 1

w 11 12 13 14 15 16 17 18 19 20
lw 2 2 3 3 4 5 7 8 11 13

w 21 22 23 24 25 26 27 28 29 30
lw 17 21 28 34 45 56 73 92 120 151

Table 23: Number of basis elements of the Lyndon basis for the MZVs for fixed weight
w.

A second natural choice is to take the afore mentioned Hoffman basis and select from
it only those elements of which the index field forms a Lyndon word. Because the alge-
braic relations for the product of basis elements of lower weight do not give objects that
are closely related to the basis elements at the higher weight, this basis is not used very
frequently.

As an example we consider the case w = 30 and calculate the size of the bases using
the Witt formula (A.13) resp. the number of Lyndon words made up by the letters 2 and
3 only with 2 < 3. 30 has the following decomposition

30 ≡ ki ∗3 + li ∗2 = 2∗3 + 12∗2 = 4∗3 + 9∗2 = 6∗3 + 6∗2 = 8∗3 +3∗2 .

(A.17)

We now calculate the number of Lyndon words for each of these contributions, with
mi = ki + li,

ni =
1
mi

∑
d|mi

µ(d)
(mi/d)!

(ki/d)!(li/d)!
. (A.18)

One obtains

L{2,3}(30) =
1
14

[
14!

12!2!
− 7!

6!

]
+

1
13

13!
9!4!

+
1
12

[
12!
6!2 − 6!

3!2 −
4!
2!2 +

2!
1!2

]
+

1
11

11!
8!3!

= 151 . (A.19)

Using (A.13) the result is

l(30) =
1

30
[P30 −P15 −P10 −P6 +P5 +P3 +P2 −P0]

=
1

30
[4610−68−17−5+5+3+2−0] = 151 . (A.20)

A basis up to weight w = 17 for the MZVs was also constructed in [82].
For the Euler sums the Fibonacci basis is counted by the Fibonacci numbers. When we

consider also all divergent multiple zeta values the Fibonacci sequence is merely shifted.
It is easily shown that the divergent Euler sums can be represented by the convergent sums
and the element σ0. As in the MZV case we may span the vector space of the Euler sums
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w 1 2 3 4 5 6 7 8 9 10
fw 1 1 2 3 5 8 13 21 34 55

w 11 12 13 14 15 16 17 18 19 20
fw 89 144 233 377 610 987 1597 2584 4181 6765

Table 24: The first 20 Fibonacci numbers.

by forming a basis, which includes products of lower weight basis elements contained in
a Lyndon-basis. One basis of this type, used in the summer program [10] reads

w = 1 ln(2) (A.21)

w = 2 ζ2, ln
2(2) (A.22)

w = 3 ζ3,ζ2 ln(2), ln3(2) (A.23)

w = 4 Li4(1/2),ζ3 ln(2),ζ2
2,ζ2 ln2(2), ln4(2) (A.24)

w = 5 Li5(1/2),ζ5,Li4(1/2) ln(2),ζ3ζ2,ζ3 ln2(2),ζ2 ln3(2),ζ2
2 ln(2), ln5(2)

(A.25)

w = 6 Li6(1/2),ζ−5,−1,Li5(1/2) ln(2),ζ5 ln(2),Li4(1/2)ζ2,

Li4(1/2) ln2(2),ζ2
3,ζ3ζ2 ln(2),ζ3 ln3(2),ζ3

2,ζ
2
2 ln2(2),ζ2 ln4(2),

ln6(2), etc. (A.26)

These bases are counted by the Fibonacci-numbers [42, 83], fw+1, which obey the same
recursion relation as the Lucas numbers, but with the initial conditions f0 = 0, f1 = 1.
They are represented by the formula given by J.P.M. Binet (1843)12

fd =
1√
5

⎡
⎣

(
1+

√
5

2

)d

−
(

1−√
5

2

)d
⎤
⎦ , (A.27)

and result from the generating function

G( fk,x) =
x

1− x− x2 =
∞

∑
k=0

xk fk . (A.28)

The first values are given in Table 24.
Another Fibonacci basis can be constructed as

w = 0 /0
w = 1 (−1)
w = 2 (0,−1) . (A.29)

H−1(1) and H0,−1(1) = H−2(1) are chosen as basis elements.

Conjecture 4.
With the above starting conditions, consider the index words at weight w to be

Iw = ∪
|a|=(w−1)

(−1, Ia) ∪ ∪
|b|=(w−2)

(−2, Ib) . (A.30)

12The relation was known to Euler and Moivre.
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The basis elements for the Euler sums are then given by the ζ-values with indices out of
Iw. The elements of which the index sets are a Lyndon word form a Lyndon basis. �

The Fibonacci version of this basis seems to have been discovered independently by
S. Zlobin, see Ref. [71].

This construction is analogous to that by Hoffman in the case of MZVs. It also uses a
2-letter alphabet. The different decomposition of the weight w, however, leads to a basis
of different length. Again we may derive the length of the basis using the Witt-formula
(A.52) or counting the basis elements as Lyndon words of the index set (A.30). Let us
give an example for w = 20.

20 = ki ∗1+ li ∗2 = 18∗1 + 1∗2 = 16∗1 + 2∗2 = 14∗1 + 3∗2

= 12∗1 + 4∗2 = 10∗1 + 5∗2 = 8∗1 + 6∗2 = 6∗1 + 7∗2

= 4∗1 + 8∗2 = 2∗1 + 9∗2 (A.31)

Similar to the non-alternating case one obtains

L{−1,−2}(20) =
1

19
19!

18!1!
+

1
18

[
18!

16!2!
− 9!

8!1!

]
+

1
17

17!
14!3!

+
1

16

[
16!

12!4!
− 9!

8!1!

]

+
1

15

[
15!

10!5!
− 3!

2!1!

]
+

1
14

[
14!
8!6!

− 7!
4!3!

]
+

1
13

13!
7!6!

+
1

12

[
12!
8!4!

− 6!
4!2!

]
+

1
11

11!
9!2!

= 750 . (A.32)

Likewise the Witt-formula (A.52) yields

l(20) =
1

20
[l20 − l10 − l4 + l2]

=
1

20
[15127−123−7+3] = 750 . (A.33)

The above basis suffers from the same shortcoming as the Hoffman basis in that the
concept of depth lacks relevance. Hence we did not use it.

In a similar way we can construct yet another Fibonacci basis:

Conjecture 5.
With the starting conditions of (A.29), consider the index words at weight w to be

Iw = ∪
|a|=(w−1)

(−1, Ia) ∪ ∪
|b|=(w−2)

(0,0, Ib) . (A.34)

The basis elements for the Euler sums are then given by the ζ-values of indices Iw. The
elements of which the index fields are a Lyndon word and all indices are odd valued if
w > 2 form a Lyndon basis. �

The Lyndon basis of this construction happens to be the basis proposed in ref [12].
We can divide Iw

Iw = Iodd
w ⊕ I¬odd

w , (A.35)
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with the indices in Iodd
w are all odd and the last index of I¬odd

w even, all others odd. The
Lyndon words of Iodd

w , Ly[Iodd
w ], form the basis elements at weight w and they are counted

by (A.52). Note, that the basis element at w = 2 is not odd, which is an exception.
As an illustration we consider the case w = 6. The following words are generated,

where we assume the ordering 0 < 1 and let the digit 1 play the role of -1.

{000001,000011,001001,001101,001111};

{100001,100101,100111,110001,110011,111001,111101,111111} . (A.36)

The Lyndon words are

(000011)≡ (−5,−1); (001111)≡ (−3,−1,−1,−1);
(000001)≡ (−6); (001101)≡ (−3,−1,−2) . (A.37)

The Lyndon words with odd indices taken as index of an Euler sum are basis elements,
which we express through the harmonic polylogarithms at argument x = 1, H−5,−1(1) and
H−3,−1,−1,−1(1). On the other hand,

H−6 =
62
35

H3
−2 (A.38)

H−3,−1,−2 = H−5,−1 +H−2H−3,−1 +
452
105

H3
−2 −

55
18

H2
−3 (A.39)

do not belong to the basis.
The last Lyndon basis is the one we actually use in the programs. It is depth oriented

and no element can be written as a linear combination of elements of lower depth or
products of elements with lower weight. To weight w = 12 the complete basis for the
finite elements is given by

w = 1 H−1; (A.40)

w = 2 H−2; (A.41)

w = 3 H−3; (A.42)

w = 4 H−3,−1; (A.43)

w = 5 H−5, H−3,−1,−1; (A.44)

w = 6 H−5,−1, H−3,−1,−1,−1; (A.45)

w = 7 H−7, H−5,−1,−1, H−3,−3,−1, H−3,−1,−1,−1; (A.46)

w = 8 H−7,−1, H−5,−3, H−5,−1,−1,−1, H−3,−3,−1,−1,

H−3,−1,−1,−1,−1; (A.47)

w = 9 H−9, H−7,−1,−1, H−5,−3,−1, H−5,−1,−3, H−5,−1,−1,−1,−1,

H−3,−3,−1,−1,−1, H−3,−1,−3,−1,−1, H−3,−1,−1,−1,−1,−1,−1; (A.48)

w = 10 H−9,−1, H−7,−3, H−7,−1,−1,−1, H−5,−3,−1,−1, H−5,−1,−3,−1,

H−5,−1,−1,−3, H−3,−3,−1,−1, H−5,−1,−1,−1,−1,−1, H−3,−3,−1,−1,−1,−1,

H−3,−1,−3,−1,−1,−1, H−3,−1,−1,−1,−1,−1,−1,−1; (A.49)
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w 1 2 3 4 5 6 7 8 9 10
lw 1 3 4 7 11 18 29 47 76 123

w 11 12 13 14 15 16 17 18 19 20
lw 199 322 521 843 1364 2207 3571 5778 9349 15127

Table 25: The first 20 Lucas numbers.

w = 11 H−11, H−9,−1,−1, H−7,−3,−1, H−7,−1,−3, H−5,−5,−1,

H−5,−3,−3, H−3,−3,−1,−3,−1, H−3,−3,−3,−1,−1, H−5,−1,−1,−1,−3,

H−5,−1,−1,−3,−1, H−5,−1,−3,−1,−1, H−5,−3,−1,−1,−1,

H−7,−1,−1,−1,−1, H−3,−1,−1,−3,−1,−1,−1, H−3,−1,−3,−1,−1,−1,−1,

H−3,−3,−1,−1,−1,−1,−1, H−5,−1,−1,−1,−1,−1,−1,

H−3,−1,−1,−1,−1,−1,−1,−1,−1; (A.50)

w = 12 H−7,−5, H−9,−3, H−11,−1, H−5,−1,−3,−3, H−5,−3,−1,−3,

H−5,−3,−3,−1, H−5,−5,−1,−1, H−7,−1,−1,−3, H−7,−1,−3,−1,

H−7,−3,−1,−1, H−9,−1,−1,−1, H−3,−3,−1,−1,−3,−1,

H−3,−3,−1,−3,−1,−1, H−3,−3,−3,−1,−1,−1, H−5,−1,−1,−1,−1,−3,

H−5,−1,−1,−1,−3,−1, H−5,−1,−1,−3,−1,−1, H−5,−1,−3,−1,−1,−1,

H−5,−3,−1,−1,−1,−1, H−7,−1,−1,−1,−1,−1, H−3,−1,−1,−3,−1,−1,−1,−1,

H−3,−1,−3,−1,−1,−1,−1,−1, H−3,−3,−1,−1,−1,−1,−1,−1,

H−5,−1,−1,−1,−1,−1,−1,−1, H−3,−1,−1,−1,−1,−1,−1,−1,−1,−1; (A.51)

For the Lyndon basis the conjectured length is [12]

l(w) =
1
w ∑

d|w
µ
(w

d

)
ld, w ≥ 2

l1 = 1, l2 = 3, l3 = 4, ld = ld−1 + ld−2, d ≥ 4 .

l(1) = 2 (A.52)

ld denote the Lucas-numbers [46, 83]. They are represented by

ld =

(
1+

√
5

2

)d

+

(
1−√

5
2

)d

, (A.53)

and derive from the generating function

G(lk,x) =
2− x

1− x− x2 =
∞

∑
k=0

xklk . (A.54)

The first values are given in Table 25. The case w = 1 is special as two elements con-
tribute.
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w 1 2 3 4 5 6 7 8 9 10
lw 1 1 1 1 2 2 4 5 8 11

w 11 12 13 14 15 16 17 18 19 20
lw 18 25 40 58 90 135 210 316 492 750

Table 26: Number of basis elements of the Lyndon basis for the Euler sums for fixed
weight w.

B Pushdown Bases

We have tried to select a basis in which the elements of the set Lw are maximal and the ex-
tended elements are minimal. At the same time the extended elements should be Lyndon
words. This means for instance that an element like H5,5,5,3 cannot be extended and hence
has to be part of the basis, even though it is the minimal element at weight w = 18. One
could of course reverse the criteria. For the construction of the bases this does not really
diminish the amount of work. In both cases there are elements that should be skipped be-
cause of linear dependencies. We call the basis below the ‘minimal pushdown basis’. In
addition we have used the requirement that for the extended elements the corresponding
A-function should be usable for a pushdown. This requirement we could enforce up to
weight w = 22. For higher weights we do not have the information in the data mine, and
hence we do not know whether this requirement can be achieved.

P2 = H2 (B.1)

P3 = H3 (B.2)

P5 = H5 (B.3)

P7 = H7 (B.4)

P8 = H5,3 (B.5)

P9 = H9 (B.6)

P10 = H7,3 (B.7)

P11 = H11,H5,3,3 (B.8)

P12 = H9,3,H6,4,1,1 (B.9)

P13 = H13,H7,3,3,H5,5,3 (B.10)

P14 = H11,3,H9,5,H5,3,3,3 (B.11)

P15 = H15,H7,3,5,H9,3,3,H6,4,3,1,1 (B.12)

P16 = H11,5,H13,3,H5,5,3,3,H7,3,3,3,H8,6,1,1 (B.13)

P17 = H17,H7,5,5,H9,3,5,H9,5,3,H11,3,3,H5,3,3,3,3,H6,6,3,1,1 (B.14)

P18 = H13,5,H15,3,H5,5,5,3,H7,3,3,5, ,H7,3,5,3,H9,3,3,3,H10,6,1,1,H6,4,3,3,1,1 (B.15)

P19 = H19,H9,3,7,H9,5,5,H11,3,5,H11,5,3,H13,3,3,

H5,3,5,3,3,H5,5,3,3,3,H7,3,3,3,3,H6,6,5,1,1,H8,6,3,1,1 (B.16)

66



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

P20 = H13,7,H15,5,H17,3,H7,3,5,5,H7,5,5,3,H7,7,3,3,H9,3,3,5,

H9,3,5,3,H11,3,3,3,H10,8,1,1,H5,3,3,3,3,3,H6,4,3,5,1,1,H8,4,3,3,1,1 (B.17)

P21 = H21,H9,5,7,H9,9,3,H11,3,7,H13,3,5,H13,5,3,H15,3,3,

H5,5,3,5,3,H5,5,5,3,3,H7,3,3,3,5,H7,3,3,5,3,H7,3,5,3,3,H9,3,3,3,3,

H8,6,5,1,1,H10,4,5,1,1,H10,6,3,1,1,H6,4,3,3,3,1,1 (B.18)

P22 = H15,7,H17,5,H19,3,H7,5,7,3,H7,7,3,5,H9,3,5,5,H9,3,7,3,

H9,5,3,5,H9,5,5,3,H11,3,3,5,H11,3,5,3,H11,5,3,3,H13,3,3,3,H12,8,1,1,

H5,3,5,3,3,3,H5,5,3,3,3,3,H7,3,3,3,3,3

H6,4,5,5,1,1,H6,6,5,3,1,1,H8,2,3,7,1,1,H8,6,3,3,1,1 (B.19)

P23 = H23,H11,7,5,H11,9,3,H13,3,7,H13,5,5,H13,7,3,H15,3,5,H15,5,3,

H17,3,3,H5,5,5,5,3,H7,3,7,3,3,H7,3,5,5,3,H7,5,3,5,3,H7,5,5,3,3,

H7,7,3,3,3,H9,3,3,3,5,H9,3,3,5,3,H9,3,5,3,3,H9,5,3,3,3,H11,3,3,3,3,

H8,6,7,1,1,H8,8,5,1,1,H10,2,9,1,1,H10,4,7,1,1,

H5,3,3,3,3,3,3H6,2,3,5,5,1,1,H6,2,5,3,5,1,1,H6,4,3,3,5,1,1 (B.20)

P24 = H17,7,H19,5,H21,3,H7,7,7,3,H9,7,3,5,H9,7,5,3,H9,9,3,3,

H11,3,3,7,H11,3,5,5,H11,3,7,3,H11,5,3,5,H11,5,5,3,H11,7,3,3,H13,3,3,5,

H13,3,5,3,H13,5,3,3,H15,3,3,3,H12,10,1,1,H14,8,1,1,H5,5,3,3,5,3,

H5,5,3,5,3,3,H5,5,5,3,3,3,H7,3,3,3,5,3,H7,3,3,5,3,3,H7,3,5,3,3,3,H7,5,3,3,3,3,

H9,3,3,3,3,3,H6,6,5,5,1,1,H8,2,5,7,1,1,H8,2,7,5,1,1,H8,4,3,7,1,1,H8,4,5,5,1,1,

H8,4,7,3,1,1,H6,2,3,3,3,5,1,1 (B.21)

P25 = H25,H11,11,3,H13,5,7,H13,7,5,H13,9,3,H15,3,7,H15,5,5,H15,7,3,

H17,3,5,H17,5,3,H19,3,3,H7,3,7,3,5,H7,5,3,7,3,H7,5,7,3,3,

H9,3,3,3,7,H9,3,3,5,5,H9,3,3,7,3,H9,3,5,3,5,H9,3,5,5,3,H9,3,7,3,3,

H9,5,3,3,5,H9,5,3,5,3,H9,5,5,3,3,H9,7,3,3,3,H11,3,3,3,5,H11,3,3,5,3,

H11,3,5,3,3,H11,5,3,3,3,H13,3,3,3,3,H8,8,7,1,1,H10,4,9,1,1,

H10,6,7,1,1,H10,8,5,1,1,H12,2,9,1,1,H5,3,3,5,3,3,3,H5,3,5,3,3,3,3,

H5,5,3,3,3,3,3,H7,3,3,3,3,3,3,H6,2,5,5,5,1,1,H6,4,3,5,5,1,1,H6,4,5,3,5,1,1,

H6,4,5,5,3,1,1,H6,6,3,3,5,1,1,H6,6,3,5,3,1,1,H6,6,5,3,3,1,1 (B.22)

P26 = H17,9,H19,7,H21,5,H23,3,H7,7,7,5,H9,5,9,3,H11,3,9,3,H11,5,3,7,

H11,5,5,5,H11,5,7,3,H11,7,3,5,H11,7,5,3,H11,9,3,3,H13,3,3,7,H13,3,5,5,

H13,3,7,3,H13,5,3,5,H13,5,5,3,H13,7,3,3,H15,3,3,5,H15,3,5,3,H15,5,3,3,

H17,3,3,3,H14,10,1,1,H5,5,5,3,5,3,H5,5,5,5,3,3,H7,3,3,5,5,3,H7,3,5,3,5,3,

H7,3,5,5,3,3,H7,3,7,3,3,3,H7,5,3,3,5,3,H7,5,3,5,3,3,H7,5,5,3,3,3,

H7,7,3,3,3,3,H9,3,3,3,3,5,H9,3,3,3,5,3,H9,3,3,5,3,3,H9,3,5,3,3,3,

H9,5,3,3,3,3,H11,3,3,3,3,3,H8,2,7,7,1,1,H8,4,5,7,1,1,H8,4,7,5,1,1,

H8,6,3,7,1,1,H8,6,5,5,1,1,H8,6,7,3,1,1,H8,8,3,5,1,1,H8,8,5,3,1,1,

H10,2,3,9,1,1,H10,2,5,7,1,1,H10,2,7,5,1,1,H5,3,3,3,3,3,3,3,

H6,2,3,3,5,5,1,1,H6,2,3,5,3,5,1,1,H6,2,5,3,3,5,1,1,H6,4,3,3,3,5,1,1 (B.23)
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The above bases are complete. For the following basis we miss the two elements at
depth 9 due to limited computer resources. Yet the construction based on L27 allows us to
predict the last two elements:

P27 = H27,H11,7,9,H13,11,3,H15,3,9,H15,5,7,H15,7,5,H15,9,3,H17,5,5,H17,7,3,

H19,3,5,H19,5,3,H21,3,3,H7,5,5,7,3,H7,5,7,3,5,H7,7,3,7,3,H7,7,7,3,3,

H9,3,9,3,3,H9,5,3,5,5,H9,5,3,7,3,H9,5,5,3,5,H9,5,5,5,3,H9,5,7,3,3,H9,7,3,3,5,

H9,7,3,5,3,H9,7,5,3,3,H9,9,3,3,3,H11,3,3,3,7,H11,3,3,5,5,H11,3,3,7,3,H11,3,5,3,5,

H11,3,5,5,3,H11,3,7,3,3,H11,5,3,3,5,H11,5,3,5,3,H11,5,5,3,3,H11,7,3,3,3,H13,3,3,3,5,

H13,3,3,5,3,H13,3,5,3,3,H13,5,3,3,3,H15,3,3,3,3,H10,8,7,1,1,H10,10,5,1,1,

H12,2,11,1,1,H12,4,9,1,1,H12,6,7,1,1,H12,8,5,1,1,H16,2,7,1,1,

H5,3,5,3,5,3,3,H5,5,3,3,3,5,3,H5,5,3,3,5,3,3,H5,5,3,5,3,3,3,H5,5,5,3,3,3,3,

H7,3,3,3,3,3,5,H7,3,3,3,3,5,3,H7,3,3,3,5,3,3,H7,3,3,5,3,3,3,H7,3,5,3,3,3,3,

H9,3,3,3,3,3,3,H6,4,5,5,5,1,1,H6,6,3,5,5,1,1,H6,6,5,3,5,1,1,H6,6,5,5,3,1,1,

H8,2,3,5,7,1,1,H8,2,3,7,5,1,1,H8,2,5,3,7,1,1,H8,2,5,5,5,1,1,H8,2,5,7,3,1,1,

H8,2,7,3,5,1,1,H8,2,7,5,3,1,1,H8,4,3,3,7,1,1,

H7,5,7,5,3 →?H6,4,6,4,3,1,1,1,1,H7,5,3,3,3,3,3 →?H6,4,3,3,3,3,3,1,1

We have selected the last two elements for the necessary extension on the basis of the
Appendix in the thesis by Racinet [68] in which for these two elements the numbers 6 and
4 seem to play a special role.

Although we have also results for P28 in which the leading depth is missing, there
are too many elements missing to give a reliable list of the basis elements. It should be
remarked though that also for P28 we expect a 2-fold pushdown from depth 8 to depth 4.

C Explicit pushdowns

Below we list all pushdowns up to w = 21 and one at w = 22 with the mixing with terms
of equal weight and depth in the left hand side and all remaining Euler sums in the right
hand side. The function A is defined in (10.3).

We only list that part of the pushdowns that we consider particularly interesting. The
complete formulas can be found in the data mine in the programs part. The name of the
file is pushdowns.h.

Z6,4,1,1 = −64
27

A7,5 + · · · (C.1)

Z6,4,3,1,1 =
1408

81
A7,5,3 + · · · (C.2)

Z8,6,1,1 +
542
175

Z5,5,3,3 − 19
7

Z7,3,3,3 = −1024
405

A9,7 + · · · (C.3)
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Z6,6,3,1,1 − 14
5

Z5,3,3,3,3 =
5120
243

A7,7,3 + · · · (C.4)

Z10,6,1,1 − 10
3

Z9,3,3,3

−124
35

Z7,3,5,3 − 124
35

Z7,3,3,5

−3282
875

Z5,5,5,3 = −8192
3375

A11,7 + · · · (C.5)

Z6,4,3,3,1,1 = −392
27

A7,5,3,3 + · · · (C.6)

Z8,6,3,1,1 − 61
7

Z7,3,3,3,3

+
1774
175

Z5,5,3,3,3 +
2
5

Z5,3,5,3,3 =
647168
34263

A7,7,5 +
45056
1215

A9,7,3 + · · · (C.7)

Z6,6,5,1,1 +13Z7,3,3,3,3

−268
25

Z5,5,3,3,3 +
6
5

Z5,3,5,3,3 = −3598336
125631

A7,7,5 − 759808
4455

A9,7,3 + · · ·
(C.8)

Z10,8,1,1 − 13
2

Z11,3,3,3 − 304
45

Z9,3,3,5

−3601
525

Z9,3,5,3 − 3799
525

Z7,3,5,5

+
1371
196

Z7,7,3,3 +
163

2450
Z7,5,5,3 = −16384

6615
A11,9 + · · · (C.9)

Z6,4,3,5,1,1 − 68
5

Z5,3,3,3,3,3 = −118784
243

A9,5,3,3 − 2560
243

A7,5,3,5 + · · ·
(C.10)

Z8,4,3,3,1,1 − 28
5

Z5,3,3,3,3,3 =
32768

81
A9,5,3,3 − 10240

2187
A7,5,3,5 + · · · (C.11)

Z8,6,5,1,1 − 68
9

Z9,3,3,3,3 − 832
105

Z7,3,5,3,3

−967
105

Z7,3,3,5,3 − 1042
105

Z7,3,3,3,5

−13182
875

Z5,5,5,3,3 − 6
7

Z5,5,3,5,3 = −194240512
9628875

A9,7,5

−229376
1125

A11,7,3

−80972546048
337010625

A11,5,5 + · · · (C.12)

Z10,4,5,1,1 − 46
9

Z9,3,3,3,3 − 67
21

Z7,3,5,3,3

−73
21

Z7,3,3,5,3 − 79
21

Z7,3,3,3,5

−482
175

Z5,5,5,3,3 − 46
175

Z5,5,3,5,3 = +
15966208

641925
A9,7,5 +

32768
2025

A11,7,3

−1691951104
67402125

A11,5,5 + · · · (C.13)
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Z10,6,3,1,1 − 46
9

Z9,3,3,3,3 − 632
105

Z7,3,5,3,3

−86
15

Z7,3,3,5,3 − 572
105

Z7,3,3,3,5

−4792
875

Z5,5,5,3,3 +
46

175
Z5,5,3,5,3 = +

124608512
9628875

A9,7,5 +
16384
10125

A11,7,3

−758235136
48144375

A11,5,5 + · · · (C.14)

Z6,4,3,3,3,1,1 = −5120
81

A7,5,3,3,3 + · · · (C.15)

Z12,8,1,1 +
13598459235
18816311591

Z7,5,7,3

−9790486696
6109192075

Z9,3,5,5 − 3021879830
2688044513

Z9,3,7,3

−560739181022
201603338475

Z9,5,3,5 − 19968330538
13440222565

Z9,5,5,3

−66543918797
40320667695

Z9,7,3,3 +
2598592817
707380135

Z11,3,3,5

−3186058443
2688044513

Z11,3,5,3 − 20352278271
13440222565

Z11,5,3,3

+
7925677546
1221838415

Z13,3,3,3 = −524288
212625

A13,9 + · · · (C.16)

The + · · · indicates terms that are purely MZVs of lower depth or products of lower weight
MZVs. The complete relations can have up to about 150 terms. Hence we give them in
a file in the data mine. The first 15 of these relations were derived with the help of
PSLQ and/or the LLL algorithm. Seven of them could be derived with the data mine.
Unfortunately for depth d = 5 objects we have only exact results up to weight w = 17 and
for depth d = 4 we have only exact results up to weight w = 22.

The above results used the available resources to their limit. The formula in (C.15)
needed 45 hours of running time using the LLL algorithms as implemented in PARI in a
152 parameter search at 8000 digits and was checked afterwards at 10000 digits.

We have expressed the pushdowns in terms of the A-function that has the same in-
dices as the element of Lw that was extended. It is not clear whether this scheme can be
maintained for pushdowns beyond the ones we present. Some A-functions cannot be used
because they express directly in terms of equal or lower depth MZVs. This then has again
influence on the selection of the basis. In the end it may be that we have to drop one or
more requirements for the basis. A simple example of such an A-function exists already
at weight w = 15 :

A7,3,5 = +
7649

143360
Z7,3,5 − 7089

143360
ζ5Z7,3 − 2097

71680
ζ3

5 −
3429
5120

ζ7Z5,3

−116396017
2867200

ζ15 +
1083797

40960
ζ2ζ13 +

81059
71680

ζ2
2ζ11

−110993
627200

ζ3
2ζ9 − 43311

448000
ζ4

2ζ7 − 27831
78400

ζ5
2ζ5 . (C.17)
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It is also possible to express each pushdown in terms of a single Euler sum rather than
an A-function. In a sense this is less telling. After all the A-function contains half of the
terms of the doubling relation and the doubling relations seem to be at the origin of the
pushdowns. Also we could not find much structure concerning which Euler sum(s) to
select. There are often many possibilities. In the case of the A-functions one can make a
unique selection: the A-function should have the same index field as the element of the set
Lw that represents the pushdown. Anyway, for completeness we give here a single Euler
sum for each of the pushdowns. We have dropped all factors and terms which have MZVs
of the same weight or products of MZVs with lower weight.

H-representation Z-representation
A7,5 → H−9,3 Z−9,−3

A7,5,3 → H−6,−3,6 Z−6,3,−6
A9,7 → H−13,3 Z−13,−3

A7,7,3 → H−6,−5,6 Z−6,5,−6
A11,7 → H−15,3 Z−15,−3

A7,5,3,3 → H6,−5,4,3 Z6,−5,−4,3

A9,7,3 → H−8,−3,8,H−6,−7,6 Z−8,3,−8,Z−6,7,−6
A7,7,5 → H−8,−3,8,H−6,−7,6 Z−8,3,−8,Z−6,7,−6
A11,9 → H−17,3 Z−17,−3

A7,5,3,5 → H8,−5,4,3,H6,−5,6,3 Z8,−5,−4,3,Z6,−5,−6,3
A9,5,3,3 → H8,−5,4,3,H6,−5,6,3 Z8,−5,−4,3,Z6,−5,−6,3

A9,7,5 → H−8,−5,8,H−6,−9,6,H−8,−3,10 Z−8,5,−8,Z−6,9,−6,Z−8,3,−10

A11,5,5 → H−8,−5,8,H−6,−9,6,H−8,−3,10 Z−8,5,−8,Z−6,9,−6,Z−8,3,−10

A11,7,3 → H−8,−5,8,H−6,−9,6,H−8,−3,10 Z−8,5,−8,Z−6,9,−6,Z−8,3,−10

A7,5,3,3,3 → H3,−6,−3,6,3 Z3,−6,3,−6,3
A13,9 → H−19,3 Z−19,−3

Of course more complete results can be found in the data mine.
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