67 research outputs found

    Strain-induced spin relaxation anisotropy in symmetric (001)-oriented GaAs quantum wells

    Get PDF
    We show experimentally, using spin quantum beat spectroscopy, that strain applied to an undoped symmetric (001) GaAs/AlGaAs multiple quantum well causes an in-plane anisotropy of the spin-relaxation rate Γs, but leaves the electron Landé g factor isotropic. The spin-relaxation-rate anisotropy gives a direct measure of the bulk inversion asymmetry and the strain contributions to the conduction-band spin splitting. The comparison of the measured strain-splitting coefficient C3 for the quantum well with the value for bulk GaAs suggests a dependence on electron quantum confinement. The isotropic g factor implies a symmetric conduction electron wave function, whereas the anisotropic spin-relaxation rate requires a nonzero expectation value of the valence-band potential gradient on the conduction-band states. Therefore, the experiment suggests that strain generates an effective valence-band potential gradient, while the conduction-band potential remains symmetrical to a good approximation. © 2011 American Physical Society

    Effect of symmetry reduction on the spin dynamics of (001)-oriented GaAs quantum wells

    Get PDF
    Spin quantum beat spectroscopy is employed to investigate the in-plane anisotropy of the spin dynamics in (001) GaAs/AlGaAs quantum wells induced by an external electric field. This technique allows the anisotropy of the spin relaxation rate Γs and the electron Landé g factor g* to be measured simultaneously. The measurements are compared to similar data from (001) GaAs/AlGaAs quantum wells with applied shear strain and asymmetric barrier growth. All of these operations act to reduce the symmetry compared to that of a symmetric (001) quantum well in an identical manner (D2d → C2v). However, by looking at the anisotropy of both Γs and g* simultaneously we show that the microscopic actions of these symmetry breaking operations are very different. The experiments attest that although symmetry arguments are a very useful tool to identify the allowed spin dependent properties of a material system, only a microscopic approach reveals if allowed anisotropies will manifest. © 2013 American Physical Society

    Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    Get PDF
    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative discrepancies to band theory. We demonstrate that the dispersive behavior as well as the temperature-dependence of the spectra can be consistently explained by the finite-energy physics of the one-dimensional Hubbard model at metallic doping. The model description can even be made quantitative, if one accounts for an enhanced hopping integral at the surface, most likely caused by a relaxation of the topmost molecular layer. Within this interpretation the ARPES data provide spectroscopic evidence for the existence of spin-charge separation on an energy scale of the conduction band width. The failure of the one-dimensional Hubbard model for the {\it low-energy} spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction.Comment: 18 pages, 9 figure

    Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress

    Get PDF
    Five species of Eucalyptus (E. grandis, E. urophylla, E. camaldulensis, E. torelliana, and E. phaeotrica), among the ten species most commonly used in large scale plantations, were selected for studies on the effects of elevated CO2 concentration [CO2] and drought stress on stomatal responses of 2.5-month old seedlings. The first three species belong to the subgenus Smphyomyrtus, whereas the fourth species belongs to the subgenus Corymbia and E. phaeotrica is from the subgenus Monocalyptus. Seedlings were grown in four pairs of open-top chambers, arranged to have 2 plants of each species in each chamber, with four replications in each of two CO2 concentrations: 350 ± 30 mumol mol-1 and 700 ± 30 mumol mol-1. After 100 days in the chambers, a series of gas exchange measurements were made. Half the plants in each chamber, one plant per species per chamber, were drought-stressed by withholding irrigation, while the remaining plants continued to be watered daily. Drought stress decreased stomatal conductance, photosynthesis and transpiration rates in all the species. The effect of drought stress on stomatal closure was similar in both [CO2]. The positive effects of elevated [CO2] on photosynthesis and water use efficiency were maintained longer during the stress period than under well-watered conditions. The photosynthetic rate of E. phaeotrica was higher even in the fourth day of the drought stress. Drought stress increased photoinhibition of photosynthesis, as measured by chlorophyll fluorescence, which varied among the species, as well as in relation to [CO2]. The results are in agreement with observed differences in stomatal responses between some eucalyptus species of the subgenera Symphyomyrtus and Monocalyptus

    Optimising carbon sequestration in arid and semiarid rangelands

    No full text
    Destocking degraded rangeland can potentially help climate change mitigation by re-sequestering emitted carbon. Broad-scale implementation has been limited by uncertainties in the magnitude, duration and location of sequestration and the profitability relative to the existing grazing land use. This paper employs a novel methodology to assess potential rangeland sequestration and its profitability, using 31Mha of rangeland in New South Wales, Australia as a case-study. This approach combines remotely sensed data and modelled estimates of various components. Remotely sensed, synthetic aperture radar data were used to determine woody biomass of minimally degraded forest (benchmarks) and neighbouring more-degraded forest, followed by sequestration modelling using non-linear growth rates based on woody thickening and slow-growing plantations, scaled to the benchmarks. Livestock concentration and livestock-based farm profits were modelled. We compared sequestration and grazing net profits, for a carbon price of AUD$10Mg-1 CO2-e, at different growth stages for different levels of forest attrition. We found that broad-scale destocking with subsequent C re-sequestration was initially unprofitable compared with grazing. However, after 50 years, with full costing of C emissions, the returns were similar for the two alternatives of continued grazing or re-sequestration, for areas with biomass below benchmark levels. Reforestation of recently deforested land represents the most profitable option with profitability increasing with growth rate. Emissions of soil organic carbon, set in motion by climate change over the next century, were calculated to be the largest of all sources. Emissions from biomass, induced by climate change, will be higher where vegetation cannot adapt. The secondary effects of climate change will reduce re-sequestration and grazing profits, possibly limiting the carbon stored by re-sequestration projects

    Livestock grazing and aridity reduce the functional diversity of biocrusts

    No full text
    Background and aims: Livestock grazing and climate change are two of the most important global change drivers affecting ecosystem functioning in drylands. Grazing and climate are known to influence the cover and composition of biocrusts, which are substantial components of dryland soils globally. Much less is known, however, about how these global change drivers affect the functional diversity of biocrust communities in these ecosystems. Methods: Here, we evaluate the role of increasing aridity and grazing intensity in driving the functional diversity of biocrusts. We collected data on multiple biocrust functional traits and community composition, recent and historic grazing intensity, and vascular plants at 151 sites from drylands in eastern Australia. We then used structural equation modelling and a fourth corner analysis to examine the combined effects of aridity and grazing on biocrust functional diversity and individual functional traits. Results: Aridity had a significant direct suppressive effect on biocrust functional diversity. Effects of grazing by livestock, kangaroos and rabbits on functional diversity were predominantly indirect and suppressive, mediated by a reduction in biocrust cover. Grazing did, however, promote functional diversity via an increase in vascular plant richness, with a concomitant increase in biocrust richness. The overall effect of grazing on biocrust functional diversity however was negative. Fourth corner analyses revealed that livestock grazing had a significant negative effect on the ability of biocrusts to stabilise the soil. Aridity had strong negative effects on biocrust height and their ability to absorb water and capture sediment. Few significant relationships were detected between enzyme-related traits and environmental variables. Conclusions: Our findings provide novel evidence that the combination of increasing aridity and intensified livestock grazing will reduce the functional diversity and capabilities of biocrust communities, with resultant declines in ecosystem functioning

    High levels of genetic variability in an isolated colony of rock-wallabies (Petrogale assimilis): Evidence from three classes of molecular markers

    No full text
    Estimates of genetic variation for a small (N(e) = 39) colony of allied rock-wallabies (Petrogale assimilis) were calculated with three different categories of molecular marker. Average heterozygosity was estimated at 3.8% for allozymes, 47.3% for multilocus 'DNA fingerprints' and 85.5% for microsatellite markers. Overall these values indicate that this small isolated colony of rock-wallabies maintains a high level of genetic variation despite its relative isolation and the apparently low levels of migration between colonies. It is likely that mechanisms exist (such as kin avoidance, multiple mating systems, high and variable selective pressure in extreme and fluctuating environmental conditions) that promote the maintenance of high levels of genetic variation in isolated colonies of P. assimilis. These mechanisms are discussed in the context of the results obtained from the molecular markers

    Biological soil crusts : an organizing principle in drylands

    No full text
    Biocrusts exert a strong influence on hydrological processes in drylands by modifying numerous soil properties that affect water retention and movement in soils. Yet, their role in these processes is not clearly understood due to the large number of factors that act simultaneously and can mask the biocrust effect. The influence of biocrusts on soil hydrology depends on biocrust intrinsic characteristics such as cover, composition, and external morphology, which differ greatly among climate regimes, but also on external factors as soil type, topography, and vegetation distribution patterns, as well as interactions among these factors. This chapter reviews the most recent literature published on the role of biocrusts in infiltration and runoff, soil moisture, evaporation, and non-rainfall water inputs (fog, dew, water absorption), in an attempt to elucidate the key factors that explain how biocrusts affect land hydrology. In addition to the crust type and site characteristics, recent studies point to the crucial importance of the type of rainfall and the spatial scale at which biocrust effects are analyzed to understand their role in hydrological processes. Future studies need to consider the temporal and spatial scale investigated to obtain more accurate generalizations on the role of biocrusts in land hydrology

    Accounting for space and time in soil carbon dynamics in timbered rangelands

    No full text
    Employing rangelands for climate change mitigation is hindered by conflicting reports on the direction and magnitude of change in soil organic carbon (ΔSOC) following changes in woody cover. Publications on woody thickening and deforestation, which had led to uncertainty in ΔSOC, were re-evaluated, and the dimensional-dependence of their data was determined. To model the fundamentals of SOC flux, linked SOC pools were simulated with first-order kinetics. Influences from forest development timelines and location of mature trees, with a potential for deep-set roots, were considered. We show that controversy or uncertainty has arisen when ΔSOC data were not measured along sufficient lengths of the three Cartesian axes and the time axis, i.e. in 4D. Thickening and deforestation experiments have particularly neglected factors affecting the time and depth axes, and sometimes neglected all four axes. Measurements of thickening must use time-spans beyond the calculable breakeven date - when thickening just recovers the SOC lost through land degradation: then all ecosystems are likely to incur net sequestration. The similarity between half-life of carbon pools, and the half-time required for sequestration, mandates that millennial time-spans must be considered in design of SOC experiments. Spatial and temporal averaging of ΔSOC data that accounted for environmentally dependent decomposition rates, revealed that deforestation to pasture incurred a higher and longer-term net emission than earlier reported. Published reports on thickening or deforestation appear no longer contradictory when one considers that they only presented views from lengths of the 4D axes that were too limited. Adoption of this understanding into carbon accounting will allow more precise estimates of carbon fluxes for emission trading schemes and national reports

    Biocrusts mitigate the impact of aridity on soil microbial communities in drylands: evidence from observations across three continents.

    No full text
    Data from "M. Delgado-Baquerizo, F.T. Maestre, D.J. Eldridge, M.A. Bowker, T.C. Jeffries, B.K. Singh. Biocrusts mitigate the impact of aridity on soil microbial communities in drylands: evidence from observations across three continents.". The spreadsheet "Dataset" contains information on the microbial community composition, diversity and functions for two microsites across 39 locations from three continents. The spreadsheet "Metadata" contains the associated metadata, where a description of all the variables and units can be found
    • …
    corecore