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Effect of symmetry reduction on the spin dynamics of (001)-oriented GaAs quantum wells
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Spin quantum beat spectroscopy is employed to investigate the in-plane anisotropy of the spin dynamics in
(001) GaAs/AlGaAs quantum wells induced by an external electric field. This technique allows the anisotropy of
the spin relaxation rate �s and the electron Landé g factor g∗ to be measured simultaneously. The measurements
are compared to similar data from (001) GaAs/AlGaAs quantum wells with applied shear strain and asymmetric
barrier growth. All of these operations act to reduce the symmetry compared to that of a symmetric (001) quantum
well in an identical manner (D2d → C2v). However, by looking at the anisotropy of both �s and g∗ simultaneously
we show that the microscopic actions of these symmetry breaking operations are very different. The experiments
attest that although symmetry arguments are a very useful tool to identify the allowed spin dependent properties
of a material system, only a microscopic approach reveals if allowed anisotropies will manifest.
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I. INTRODUCTION

In recent decades there have been numerous proposals
for devices that utilize the spin degree of freedom of
electrons in semiconductors for spintronic applications.1–3

Heterostructures based upon III-V compounds are of particular
interest in this field because they lack an inversion center
which introduces a spin dependent splitting of the electron
energy dispersion characterised by the spin-orbit field.4,5 The
spin dynamics can be manipulated and controlled either by
engineering the structure or via the application of external
fields to enhance or attenuate the bulk crystal spin splitting.6,7

However, the microscopic mechanisms of these perturbations
and their effects on the spin dynamics must be understood
before full control can be achieved.

The spin-orbit field in semiconductors is a direct conse-
quence of inversion asymmetry in the crystal structure.8 There-
fore, gaining control of the symmetry of the crystal structure
makes it possible to mold the spin dynamics as favored. A bulk
zinc-blende crystal has the tetrahedral symmetry point group
Td which is essentially isotropic. Therefore, the spin dynamics
in bulk crystal are also isotropic with relation to orientation of
the spins in the crystal lattice. Growth of a quantum well on a
(001) zinc-blende substrate reduces the symmetry to the point
group D2d .9 This point group possesses fourfold symmetry in
the plane of the well, but with the symmetry broken between
the in-plane (x, y) and out-of-plane (z) directions. The spin
dynamics are therefore allowed to display anisotropy between
these components. The symmetry of a (001) quantum well
can be reduced further by the application of an electric field
along the growth axis, shear strain in the plane of the well,
or through asymmetric barrier growth. These perturbations act
to remove the mirror symmetry of the quantum well and thus
reduce the point group to C2v .9 This means that in addition to
the anisotropy of the in-plane and out-of-plane components
a twofold anisotropy in the plane of the well is allowed
to develop. However, simply because anisotropy of the spin
dynamics is allowed by symmetry considerations this does not
imply that it will always occur.10,11

The reduction of the symmetry in (001) semiconductor
quantum wells via the three methods under discussion here
(electric field, shear strain, or asymmetric barriers) can affect
the spin-orbit splitting and/or induce a gradient in the conduc-
tion and valence bands. While symmetry arguments inform us
that anisotropy is allowed, the origin of the in-plane anisotropy
of �s or g∗ lies in these microscopic actions. In (001) quantum
wells, anisotropy of �s requires, in addition to the bulk
inversion asymmetry term (BIA), another spin-orbit term of the
same form as the structural inversion asymmetry (SIA) term,12

whereas for an anisotropic g∗ an asymmetric conduction
electron wave function is needed.13 Therefore, simultaneous
measurement of the anisotropy of �s and g∗ can be used as
a powerful tool to directly reveal the microscopic effects on
the structure. In Refs. 10 and 11 we have already utilized this
method to show that asymmetric barrier growth generates a
conduction band gradient (Fig. 1) that is isomorphous with
respect to the valence band and that shear strain produces an
SIA type term while the conduction band remains symmetric.
The anisotropy of the spin relaxation rate produced by an
external electric field has previously been investigated but the
g factor anisotropy was omitted from this study.14 In this paper
we complete this missing link in this topic and simultaneously
measure the anisotropy of both �s and g∗ produced when an
electric field is applied along the growth axis of the quantum
well.

We use spin quantum beat spectroscopy15,16 to investigate
the spin dynamics of symmetric (001) quantum wells with a
variable potential gradient produced by an external electric
field applied along the growth axis. The sample contains
two different quantum well widths which allows the effect
of electron confinement energy on the spin dynamics to be
studied. The method gives the spin relaxation rates for spin
components along the growth axis, �s

‖, and in the quantum
well plane �s

⊥, and also the in-plane Landé g factor of the
photo-excited conduction electrons. We find that a nonzero
potential gradient produces significant in-plane anisotropy of
both �s

⊥ and g∗.
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FIG. 1. (Color online) Table showing which symmetry breaking
operations in (001) semiconductor quantum wells generate a conduc-
tion band gradient or an SIA type term using the anisotropy of the
spin dynamics as an indicator.

II. ORIGIN OF �s ANISOTROPY

A detailed treatment of the origin of the anisotropy of the
relaxation rate and g factor is found in Refs. 10 and 11. What
follows is a summary of the important points. The dominant
spin relaxation mechanism in (001) grown GaAs/AlGaAs
quantum wells is the Dyakonov-Perel (DP) spin-dephasing
mechanism.17 The electron experiences a momentum depen-
dent effective magnetic field about which the electron spin
precesses. Momentum relaxation occurs due to scattering from
ionized impurities. This randomizes the momentum and hence
the electron experiences a fluctuating effective magnetic field
which causes spin polarization to be lost.18,19 The effective
magnetic field is produced by inversion asymmetry in the struc-
ture of which there are three main sources that contribute to a
total precession vector. These are the bulk inversion asymmetry
from the host crystal �BIA, the Rashba term �SIA, produced by
a nonisomorphous gradient in the valence band,9 and the strain
term �STR from the application of shear strain.20 The resultant
effective magnetic field is given as the sum of these terms such
that �(p) = �BIA + �SIA + �STR. The form of these terms
and their momentum dependence are listed in Table I.

An SIA type term in the spin precession vector in a (001)
zinc-blende quantum well interferes with the BIA term and
thereby generates an anisotropy of the spin relaxation rate.12

This interference can produce an enhanced spin precession
vector along one axis while canceling the vector along the
perpendicular axis. The SIA term and the shear strain term
have the same form, as indicated in Table I, and therefore
either of these terms will cause the same interference. The
SIA term is produced by a gradient of the valence band
that is not proportional to the conduction band gradient, i.e.,
a nonisomorphous gradient.10,21 Therefore, the presence of
in-plane relaxation rate anisotropy reveals the presence of
either shear strain or a nonisomorphous valence band gradient.

TABLE I. Contributions to the spin precession vector to lowest
order in electron momentum due to the BIA, SIA, and strain terms
for a (001) quantum well. Where α, γ , and C3 are the Rashba,
Dresselhaus, and strain coefficients respectively, εij is the shear
component of the strain tensor, and px,y,z are the components of
the electron momentum.

�(p)Term Contribution
[x] [y] [z] [100] [010] [001]

�BIA
β

h̄2 {−px,py,0}
�SIA

α

h̄2 {py, −px,0}
�STR

C3
h̄2 εxy{py, −px,0}

Using the spin precession vectors in Table I, the spin
relaxation rate projected onto the z axis can be derived as
a function of θ , which is defined as the angle that an in-plane
magnetic field makes to the [110] axis.14 This gives

�s(θ ) = 1

2

[
�s

‖ + �s
⊥

(
θ + π

2

)]

= 3Cβ2

4

[
1 +

(
α

β

)2

+ 2α

3β
cos(2θ )

]
, (1)

where �s
‖ and �s

⊥ are the in-plane and out-of-plane spin
relaxation rates, respectively. The coefficient for the BIA term
is given as

β = 〈
p2

z

〉
γ /h̄2, (2)

where γ is the Dresselhaus coefficient and 〈p2
z 〉 is the

expectation value of the momentum squared in the growth
direction z. The momentum squared expectation value can be
calculated using the relation 〈p2

z 〉 = E1.m
∗, where E1 is the

energy of the lowest subband and m∗ is the electron effective
mass. The coefficient for the SIA term is

α = α′e Ez, (3)

where α′ is the Rashba coefficient, e is the charge of an
electron, and Ez is the electric field in the z direction. The
coefficient C is a constant derived from the momentum
scattering time.

III. ORIGIN OF g∗ ANISOTROPY

A gradient of the conduction band in the growth direction
causes the conduction electron wave function to become
asymmetric. When an external magnetic field is applied in
the plane of the well there are small corrections to the electron
momentum due to Lorentz motion along the z axis. Due to the
asymmetry of the wave function these additional terms are not
averaged out and thus small corrections to the Hamiltonian are
produced. As demonstrated by Kalevich and Korenev, these
corrections introduce off-diagonal elements into the g factor
tensor, which therefore has three independent components, i.e.,
gxx = gyy , gzz, and gxy = gyx 	= 0.13 This yields an in-plane
anisotropy of the g factor which is given by10,13,22

g(θ ) = −
√

g2
xx + g2

xy + 2gxxgxy cos(2θ ), (4)

where θ is the angle of the magnetic field in the quantum well
plane with respect to the [110] direction. The value of gxx is
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negative for quantum wells that are wider than ≈7 nm, as is
the case for the quantum wells investigated in this report.23,24

The magnitude of the off diagonal element is given as13

gxy = gyx =
(

2γ e

h̄3μB

)(〈
p2

z

〉〈z〉 − 〈
p2

z z
〉)
, (5)

where 〈〉 denotes an expectation value over the electron wave
function. The asymmetry of the electron wave function in
the conduction band is defined by the term (〈p2

z 〉〈z〉 − 〈p2
z z〉)

in Eq. (5). This term will be zero when the electron wave
function is symmetrical with respect to reflection in a plane
perpendicular to the growth direction. Therefore, in-plane
anisotropy of g∗ for [001]-grown quantum wells is a conse-
quence of asymmetry of the conduction band electron wave
function and is modulated by the Dresselhaus coefficient γ .

IV. EXPERIMENT

The sample investigated was a p-i-n heterostructure with
the insulating region containing undoped, (001)-oriented,
GaAs/Al0.4Ga0.6As quantum wells of two different widths
(17.5 nm and 10 nm) with five repeats of each width of
quantum well and 14 nm barriers between the wells. The
p-i-n heterostructure allowed the application of an easily
controllable and homogeneous potential gradient. The sample
was mounted on a rotation stage in a liquid helium cryostat
with a variable superconducting magnet reaching transverse
fields of up to 8 T. The growth axis of the sample coincided
with the direction of excitation and the rotation axis of the
mount. The axis of the horizontal magnetic field was aligned
perpendicular to the growth axis.

The technique of spin quantum spectroscopy was employed
to measure the time resolved spin dynamics as described
in Refs. 4 and 16. The sample was excited with circularly
polarized picosecond laser pulses incident parallel to the
growth direction by a mode locked 80 MHz Ti:Sapphire laser
oscillator at a wavelength of 750 nm. The laser light was
focused onto the sample yielding an excitation density of
≈2 × 108cm−2. A liquid crystal retarder and a polarizer were
used to detect the two circular polarization components of the
excited photoluminescence (PL) consecutively. The intensity
of both components were recorded using a synchroscan streak
camera imaging system which spectrally and temporally
resolved the PL with a resolution of 0.5 nm and 8 ps,
respectively.

Absorption of circularly polarized light creates spin polar-
ized populations of electrons and holes whose momentum dis-
tribution rapidly thermalizes after excitation via the emission
of phonons and other scattering events. The hole population
loses its spin orientation on the time scale of momentum
relaxation (τ ∗

p < 1ps) due to strong valence band mixing and
momentum dependent spin splitting. The degree of circular
polarization of the PL, Pσ = (σ+ − σ−)/(σ+ + σ−), is thus
proportional to the conduction electron spin polarization.16

V. RESULTS AND DISCUSSION

Figure 2 shows the time evolution of the component of the
spin polarization parallel to the z axis for both well widths.
Both data sets were measured simultaneously at a sample

FIG. 2. (Color online) The time evolution of the degree of circular
polarization for the two different well widths, 17.5 nm (top) and
10 nm (bottom), at a sample temperature of 25 K.

temperature of 25 K for a reverse bias of 0 V and a magnetic
field of 4 T applied parallel to the in-plane [110] axis. All the
measurements we report here were conducted at 25 K which
insured a high PL intensity and therefore a good signal to
noise ratio. The observed oscillation of the degree of circular
polarization is caused by the coherent Larmor precession
of the conduction electron spin population with frequency
ωL = g∗μBB/h̄ about the external magnetic field B. In order
to extract both the spin relaxation rate �s and the g factor the
data was fitted to A · cos(ωLt) e−�s t with A, ωL, and �s as free
parameters.

Quantum confinement acts to decrease the absolute mag-
nitude of the effective g factor compared to that of the bulk
value.9 For bulk GaAs the effective g factor is negative and
hence an increasing confinement energy causes gxx to tend
back towards the free electron Landé g factor. Furthermore,
increasing confinement along the z axis causes an increase
in the spin relaxation rate since 〈p2

z 〉 and thereby the BIA
coefficient β increases. Therefore, the two well widths have
different values of g∗ and �s as can be seen easily in Fig. 2.
The 17.5 nm quantum well signal has a spin lifetime of 411 ps
and a g factor of −0.325 whilst the 10 nm quantum well signal
has has a spin lifetime of 120 ps and a g factor of −0.155.

Figure 3 displays the variation of both g∗ (open circles)
and �s (closed circles) as a function of the in-plane angle
of the magnetic field B to the [110] crystal axis. Figure 3(a)
displays the data for the 10 nm well with an applied reverse
bias of 2 V, which corresponds to the maximum anisotropy of
both �s and g∗. Figure 3(b) displays the data for the 17.5 nm
well with an applied reverse bias of 0.8 V, corresponding to
the maximum relaxation rate anisotropy reaching the particular
condition where the Dresselhaus and Rashba splitting are equal
and cancel each other for distinct points in momentum space,
i.e., α/β ≈ 1. The solid lines indicate fits to Eqs. (1) and (4)
which give values of α/β, gxy , and gxx for different values of
applied field.

The extracted values of gxy are shown in Fig. 4 as a function
of reverse bias for both the 10 nm (solid circles) and the
17.5 nm (open circles) well widths. The solid lines are nu-
merically calculated values for gxy using the asymmetry term
(〈p2

z 〉〈z〉 − 〈p2
z z〉) in Eq. (5) with a fixed Dresselhaus splitting

of γ = 11 eV Å3. The value of γ perfectly fits previous
measurements on two dimensional heterostructures25 and as
suggested in Ref. 26 does not change with confinement.
Therefore, the change in gxy can be unambiguously attributed
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FIG. 3. (Color online) The variation of both the effective g factor
(open circles) and relaxation rate (closed circles) are displayed as a
function of the angle of the magnetic field B to the [110] axis at a
temperature of 25 K for (a) the 10 nm quantum well with a negative
bias of 2 V applied and (b) the 17.5 nm quantum well with a negative
bias of 0.8 V applied.

to the magnitude of the asymmetry of the electron wave
function due to the electric field.

The value of the ratio of α/β is obtained by fitting the
spin relaxation rate in Fig. 3 to Eq. (1). The value of β is
calculated according to Eq. (2) with γ = 11 eV Å3, as given in
Ref. 26, and the numerically obtained values of 〈p2

z 〉, which are
dependent on the electric field. From the individual values of
α/β and β one obtains the absolute value of α. Figure 5 shows
the extracted values of α plotted versus the applied reverse bias

FIG. 4. (Color online) Variation of gxy as a function of the
potential gradient for the 10 nm quantum well (solid circles) and the
17.5 nm quantum well (open circles). Solid lines show the calculated
values of gxy for a fixed Dresselhaus constant for these well widths.

FIG. 5. (Color online) Dependence of α as a function of the
potential gradient induced by an electric field parallel to the growth
direction for the 10 nm quantum well (solid circles) and the 17.5 nm
quantum well (open circles). Solid lines show linear fits to the data.
The numerically calculated values of β are displayed as a function of
electric field for both the 17.5 nm (dashed line) and 10 nm (dot-dashed
line) quantum wells. The values of α and β for the 17.5 nm wells
intercept at ≈35 kV/cm corresponding to α/β = 1.

for the 17.5 nm (open circles) and the 10 nm (solid circles)
well widths. The numerically calculated values of β are also
shown as a function of electric field for both the 17.5 nm
(dashed line) and 10 nm (dot-dashed line) quantum wells. The
values of α and β cross at a potential gradient of 35 kV/cm
which corresponds to α/β = 1. As expected from Eq. (3), α

is linearly dependent on the external electric field. The solid
lines are linear fits to this data with the gradient giving the
values for the Rashba coefficient α′. These are 0.042 nm2 for
the 17.5 nm quantum wells and 0.017 nm2 for the 10 nm
quantum wells. These values are comparable in magnitude
to previous measurements and clearly show a dependence
on confinement energy in line with the energy dependence
previously measured, i.e., larger confinement energy results in
a smaller Rashba coefficient.25

A higher potential gradient lowers the effective confinement
via the quantum confined Stark effect and increases the
asymmetry of the wave function. Figures 4 and 5 show
that increasing confinement energy significantly reduces the
anisotropy of both g∗ and �s

⊥. The reduction of gxy with
confinement is due to a decrease in the asymmetry term in
Eq. (5) for larger confinement energy and hence lower potential
gradient.22 The strength of the Rashba term α is mediated by
the asymmetry of the wave function which is larger for wider
quantum wells for a given potential gradient. The value of
β is proportional to the confinement energy and is therefore
larger for the 10 nm well than the 17.5 nm well and decreases
for increasing potential gradient. Therefore, in wider quantum
wells a smaller electric field is required to produce a value
of α that is comparable to β. This is the case in the 17.5 nm
quantum well where the application of only a modest external
electric field produces a ratio of α/β = 1. This indicates a
regime where there is full cancellation of the spin-orbit field
along the [110] axis. The DP contribution to �s

‖ for spins
aligned perpendicular to this axis should vanish. The fact that
the spin lifetime only increases to 2 ns indicates that other
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relaxation mechanisms play a role once DP is canceled as has
been observed in other systems.4,27

VI. SUMMARY

The measurement of the in-plane anisotropy of the spin
dynamics in (001) quantum wells can be used as a tool to
reveal the microscopic actions of different symmetry breaking
perturbations on the band edges. We have investigated the
anisotropy induced by asymmetric barrier growth in Ref. 10,
the application of strain in Ref. 11, and the application of
an external electric field in this paper. A comparison of the
anisotropy produced by these three perturbations shows that
while the change in symmetry is identical for each, the effects
on the band edges are very different. An asymmetric potential
produced by a graded alloy barrier induces g factor anisotropy
without anisotropy of spin relaxation. Therefore, the conduc-
tion band electron wave function must be asymmetric but the
valence and conduction bands are isomorphous, i.e., related
by a constant factor.10 Shear strain has the opposite effect and
induces only a relaxation rate anisotropy while g∗ remains
isotropic. Therefore, strain induces a spin splitting that can

interfere with the bulk splitting while the wave function of the
conduction electron remains symmetric.11 The work presented
here reveals that an electric field applied along the growth
axis produces a nonisomorphous gradient of the valence and
conduction band and also causes the electron wave function to
become asymmetric.

In conclusion, the effects on the symmetry of all three
perturbations are identical and mean that the spin dynamics
are allowed to develop an in-plane anisotropy. However,
the appearance of anisotropy of �s or g∗ is not required,
but is rather a consequence of the microscopic effect of
the perturbation. Therefore, by simultaneously measuring the
anisotropy of both quantities we have revealed the different
microscopic actions of these symmetry breaking operations.
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