80 research outputs found

    Out-of-equilibrium evolution of scalar fields in FRW cosmology: renormalization and numerical simulations

    Get PDF
    We present a renormalized computational framework for the evolution of a self-interacting scalar field (inflaton) and its quantum fluctuations in an FRW background geometry. We include a coupling of the field to the Ricci scalar with a general coupling parameter ξ\xi. We take into account the classical and quantum back reactions, i.e., we consider the the dynamical evolution of the cosmic scale factor. We perform, in the one-loop and in the large-N approximation, the renormalization of the equation of motion for the inflaton field, and of its energy momentum tensor. Our formalism is based on a perturbative expansion for the mode functions, and uses dimensional regularization. The renormalization procedure is manifestly covariant and the counter terms are independent of the initial state. Some shortcomings in the renormalization of the energy-momentum tensor in an earlier publication are corrected. We avoid the occurence of initial singularities by constructing a suitable class of initial states. The formalism is implemented numerically and we present some results for the evolution in the post-inflationary preheating era.Comment: 44 pages, uses latexsym, 6 pages with 11 figures in a .ps fil

    Nonlinear evolution of the momentum dependent condensates in strong interaction: the ``pseudoscalar laser''

    Get PDF
    We discuss the relaxation of the scalar and pseudoscalar condensates after a rapid quench from an initial state with fluctuations. If we include not only the zero-mode but also higher modes of the condensates in the classical evolution, we observe parametric amplification of those ``hard'' modes. Thus, they couple nonlinearly to the ``soft'' modes. As a consequence, domains of coherent pi-field emerge long after the initial spinodal decomposition. The momentum-space distribution of pions emerging from the decay of that momentum-dependent condensate is discussed.Comment: 6 Pages, REVTEX, 8 Figures; one reference and one figure adde

    A 15.7-minAM CVn binary discovered in K2

    Get PDF
    We present the discovery of SDSS J135154.46−064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components

    Turbulent Thermalization

    Full text link
    We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and initial inflaton amplitude.Comment: 27 pages, 13 figure

    The inflationary bispectrum with curved field-space

    Get PDF
    We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution using a covariantized version of the separate universe or "delta-N" expansion, which must be augmented by terms measuring curvature of the field-space manifold, and give the nonlinear gauge transformation to the comoving curvature perturbation. Nonlinearities induced by the field-space curvature terms are a new and potentially significant source of non-Gaussianity. We show how inflationary models with non-minimal coupling to the spacetime Ricci scalar can be accommodated within this framework. This yields a simple toolkit allowing the bispectrum to be computed in models with non-negligible field-space curvature.Comment: 22 pages, plus appendix and reference

    Nonequilibrium evolution in scalar O(N) models with spontaneous symmetry breaking

    Full text link
    We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for a scalar O(N) model with spontaneously broken symmetry. In contrast to previous studies we do not consider the large N limit, but the case of finite N, including N=1, i.e., plain λϕ4\lambda \phi^ 4 theory. The instabilities encountered in the one-loop approximation are prevented, as in the large-N limit, by back reaction of the fluctuations on themselves, or, equivalently, by including a resummation of bubble diagrams. For this resummation and its renormalization we use formulations developed recently based on the effective action formalism of Cornwall, Jackiw and Tomboulis. The formulation of renormalized equations for finite N derived here represents a useful tool for simulations with realistic models. Here we concentrate on the phase structure of such models. We observe the transition between the spontaneously broken and the symmetric phase at low and high energy densities, respectively. This shows that the typical structures expected in thermal equilibrium are encountered in nonequilibrium dynamics even at early times, i.e., before an efficient rescattering can lead to thermalization.Comment: 31 pages, 19 Figures, LaTeX; extended discussion on the basis of: fluctuations, eff. potential, correlations, analytic calculation of parametric resonance for "pion"_and_ "sigma" field

    Supersymmetry on the Run: LHC and Dark Matter

    Full text link
    Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for SUSY is one of the main aims of the recently launched Large Hadron Collider. The other possible manifestation of SUSY is the Dark Matter in the Universe. The present lectures contain a brief introduction to supersymmetry in particle physics. The main notions of supersymmetry are introduced. The supersymmetric extension of the Standard Model - the Minimal Supersymmetric Standard Model - is considered in more detail. Phenomenological features of the MSSM as well as possible experimental signatures of SUSY at the LHC are described. The DM problem and its possible SUSY solution is presented.Comment: Latex, 37 pages, 35 figures. Lectures given at 48 Schladming School on Theoretical Physics, March 201
    • …
    corecore