We present a renormalized computational framework for the evolution of a
self-interacting scalar field (inflaton) and its quantum fluctuations in an FRW
background geometry. We include a coupling of the field to the Ricci scalar
with a general coupling parameter ξ. We take into account the classical and
quantum back reactions, i.e., we consider the the dynamical evolution of the
cosmic scale factor. We perform, in the one-loop and in the large-N
approximation, the renormalization of the equation of motion for the inflaton
field, and of its energy momentum tensor. Our formalism is based on a
perturbative expansion for the mode functions, and uses dimensional
regularization. The renormalization procedure is manifestly covariant and the
counter terms are independent of the initial state. Some shortcomings in the
renormalization of the energy-momentum tensor in an earlier publication are
corrected. We avoid the occurence of initial singularities by constructing a
suitable class of initial states. The formalism is implemented numerically and
we present some results for the evolution in the post-inflationary preheating
era.Comment: 44 pages, uses latexsym, 6 pages with 11 figures in a .ps fil