168 research outputs found
Charge Density Wave-Assisted Tunneling Between Hall Edge States
We study the intra-planar tunneling between quantum Hall samples separated by
a quasi one-dimensional barrier, induced through the interaction of edge
degrees of freedom with the charge density waves of a Hall crystal defined in a
parallel layer. A field theory formulation is set up in terms of bosonic
(2+1)-dimensional excitations coupled to (1+1)-dimensional fermions. Parity
symmetry is broken at the quantum level by the confinement of
soliton-antisoliton pairs near the tunneling region. The usual Peierls argument
allows to estimate the critical temperature , so that for mass
corrections due to longitudinal density fluctuations disappear from the edge
spectrum. We compute the gap dependence upon the random global phase of the
pinned charge density wave, as well as the effects of a voltage bias applied
across the tunneling junction.Comment: Additional references + 1 figure + more detailed discussions. To be
published in Phys. Rev.
Long-term multisystemic efficacy of migalastat on Fabry-associated clinical events, including renal, cardiac and cerebrovascular outcomes
Fabry disease is a rare, multisystemic disorder caused by GLA gene variants that lead to alpha galactosidase A deficiency, resulting in accumulation of glycosphingolipids and cellular dysfunction. Fabry-associated clinical events (FACEs) cause significant morbidity and mortality, yet the long-term effect of Fabry therapies on FACE incidence remains unclear. This posthoc analysis evaluated incidence of FACEs (as a composite outcome and separately for renal, cardiac and cerebrovascular events) in 97 enzyme replacement therapy (ERT)-naïve and ERT-experienced adults with Fabry disease and amenable GLA variants who were treated with migalastat for up to 8.6 years (median: 5 years) in Phase III clinical trials of migalastat. Associations between baseline characteristics and incidence of FACEs were also evaluated. During long-term migalastat treatment, 17 patients (17.5%) experienced 22 FACEs and there were no deaths. The incidence rate of FACEs was 48.3 events per 1000 patient-years overall. Numerically higher incidence rates were observed in men versus women, patients aged >40 years versus younger patients, ERT-naïve versus ERT-experienced patients and men with the classic phenotype versus men and women with all other phenotypes. There was no statistically significant difference in time to first FACE when analysed by patient sex, phenotype, prior treatment status or age. Lower baseline estimated glomerular filtration rate (eGFR) was associated with an increased risk of FACEs across patient populations. The overall incidence of FACEs for patients during long-term treatment with migalastat compared favourably with historic reports involving ERT. Lower baseline eGFR was a significant predictor of FACEs
Application of small punch creep testing to a thermally sprayed CoNiCrAlY bond coat
High velocity oxy-fuel thermal spraying was used to prepare free-standing CoNiCrAlY (Co–31.7% Ni–20.8% Cr–8.1% Al–0.5% Y (wt%)) bond coat alloy samples approximately 0.5 mm thick. Creep tests were conducted at 750 °C on these samples using a small punch (SP) creep test method. The samples were characterised before and after creep testing using scanning electron microscopy with electron backscatter diffraction (EBSD). EBSD revealed a two phase fcc γ-Ni and bcc B2 β-NiAl microstructure with grain sizes ~1–2 μm for both phases, which did not change significantly following testing. The constant temperature SP test data were characterised by a minimum creep strain rate, View the MathML source, and a total time to failure, tf, at different applied stresses. The data are fitted to conventional power law equations with a stress exponent for creep close to 8 in the Norton power law and between 7 and 10 in the Monkman–Grant creep rupture law. Creep rupture was predominantly due to creep cavitation voids nucleating at both the γ–β interphase boundaries and the γ–γ grain boundaries leading to final failure by void linkage. However, rupture life was influenced by the quantity of oxide entrained in the coating during the spray deposition process
Some aspects on modelling of the β-phase depletion behaviour under different oxide growth kinetics in HVOF CoNiCrAlY coatings
In this paper, β-phase depletion behaviour of free-standing high velocity oxy-fuel (HVOF) thermally sprayed CoNiCrAlY coatings was studied. Microstructural analysis showed a two-phase microstructure of γ-Ni matrix and β-NiAl secondary phase after heat treatment. Fine grains were found around the sprayed particle boundaries and coarse grains were retained as the original particle structure, with grain sizes varying from 2 to 0.5 μm or even less for both phases. The β-phase depletion behaviour was investigated during isothermal oxidation and was also modelled through diffusion calculations. A previously developed β-phase depletion model was utilised to study the evolution of β-phase depletion under different oxide growth kinetics. Three oxide growth models were tried: 1) Meier model, 2) thermogravimetric analysis (TGA) model, and 3) experimentally fitted oxide growth model. The oxide growth kinetics were converted to Al flux functions which were used as the boundary conditions in the DICTRA modelling. It is shown that the results obtained from the three models exhibit good agreements between the measured and predicted results for times up to 100 h at 1100 C, but discrepancies were noted at longer oxidation times. Further improvements on closely modelling the oxidation kinetics and the effective diffusion behaviour are needed to minimise the discrepancies at longer oxidation times
Modelling and experimental study on β-phase depletion behaviour of HVOF sprayed free-standing CoNiCrA1Y coatings during oxidation
This paper investigates the β-phase depletion behaviour during oxidation of free-standing CoNiCrA1Y (Co-31.7%Ni-20.8%Cr-8.1%A1-0.5%Y, all in wt%) bond coats prepared by high velocity oxy-fuel (HVOF) thermal spraying. The microstructure of the coatings was characterised using scanning electron microscopy with energy dispersive X-ray (EDX) analysis and electron backscatter diffraction (EBSD). It comprises a two phase structure of fcc γ-Ni and bcc β-NiA1, with grain sizes varying largely from 0.5 to 2 μm for both phases. Isothermal oxidation tests of the free-standing coatings were carried out at 1100 °C for times up to 250 h. The β phase depletion behaviour at the surface was measured and was also simulated using Thermo-Calc and DICTRA software. An A1 flux function derived from an oxide growth model was employed as the boundary condition in the diffusion model. The diffusion calculations were performed using the TTNi7 thermodynamic database together with the MOB2 mobility database. Reasonable agreement was achieved between the measured and the predicted element concentration and phase fraction profiles after various time periods. Grain boundary diffusion is likely to be important to element diffusion in this HVOF sprayed CoNiCrA1Y coating due to the sub-micron grains
An analytical approach to the β-phase coarsening behaviour in a thermally sprayed CoNiCrAlY bond coat alloy
This paper investigates the β-phase coarsening behaviour during isothermal heat treatment of free-standing CoNiCrAlY (Co-31.7%Ni-20.8%Cr-8.1%Al-0.5%Y, all in wt%) coatings prepared by high velocity oxy-fuel (HVOF) thermal spraying. The microstructure of the coatings was characterised using scanning electron microscopy with energy dispersive X-ray (EDX) analysis and electron backscatter diffraction (EBSD). It comprises a two phase structure of fcc γ-Ni matrix and bcc β-NiAl precipitates. The volume fraction of the γ-Ni and the β-NiAl phases were measured to be around 70% and 30% respectively, with grain sizes varying largely from 0.5 to 2 μm for both phases. Isothermal heat treatments of the free-standing coatings were carried out at 1100 C for times up to 250 h. The β-phase coarsening behaviour during isothermal heat treatments was analysed by quantitative metallography. It is shown that the coarsening behaviour of β phase in the CoNiCrAlY alloy followed the classical Lifshitz-Slyozov-Wagner (LSW) theory of Ostwald ripening. By incorporating a dimensionless factor which correlates with volume fraction of the β phase, a modified LSW model coupled with formulaic interfacial energy and effective diffusion coefficient of the CoNiCrAlY alloy was utilised to interpret the coarsening behaviour of the β phase. The coarsening rate coefficient obtained from the modified LSW model shows good agreement with the corresponding experimental result
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
- …