1,294 research outputs found
A geometrical formulation of the Ό-lower bound problem
A new problem formulation for the structured singular value μ in the case of purely real (possibly repeated) uncertainties
is presented. The approach is based on a geometrical interpretation of the singularity constraint arising in the μ lower bound
problem. An interesting feature of this problem formulation is that the resulting parametric search space is independent of
the number of times any parameter is repeated in the structured uncertainty matrix. A corresponding lower bound algorithm
combining randomisation and optimisation methods is developed, and some probabilistic performance guarantees are derived.
The potential usefulness of the proposed approach is demonstrated on two high-order real μ analysis problems from the
aerospace and systems biology literature
On the effects of using CO2 and F2 lasers to modify the wettability of a polymeric biomaterial.
Enhancement of the surface properties of a material by means of laser radiation has been amply demonstrated previously. In this work a comparative study for the surface modification of nylon 6,6 has been conducted in order to vary the wettability characteristics using CO2 and excimer lasers. This was done by producing 50 ÎŒm spaced (with depths between 1 and 10 ÎŒm) trench-like patterns using various laser parameters such as varying the laser power for the CO2 laser and number of pulses for the excimer laser. Topographical changes were analysed using optical microscopy and white light interferometry which indicated that both laser systems can be implemented for modifying the topography of nylon 6,6. Variations in the surface chemistry were evaluated using energy-dispersive X-ray spectroscopy and x-ray photoelectron spectroscopy analysis and showed that the O2 increased by up to 1.5% At. and decreased by up to 1.6% At. for the CO2 and F2 laser patterned samples, respectively. Modification of the wettability characteristics was quantified by measuring the advancing contact angle, which was found to increase in all instances for both laser systems. Emery paper roughened samples were also analysed in the same manner to determine that the topographical pattern played a major role in the wettability characteristics of nylon 6,6. From this, it is proposed that the increase in contact angle for the laser processed samples is due to a mixed intermediate state wetting regime owed to the periodic surface roughness brought about by the laser induced trench-like topographical patterns
Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability
It has been amply demonstrated previously that CO2 lasers hold the ability to surface modify various polymers. In addition, it has been observed that these surface enhancements can augment the biomimetic nature of the laser irradiated materials. This research has employed a CO2 laser marker to produce trench and hatch topographical patterns with peak heights of around 1 ÎŒm on the surface of nylon 6,6. The patterns generated have been analysed using white light interferometery, optical microscopy and X-ray photoelectron spectroscopy was employed to determine the surface oxygen content. Contact angle measurements were used to characterize each sample in terms of wettability. Generally, it was seen that as a result of laser processing the contact angle, surface roughness and surface oxygen content increased whilst the apparent polar and total surface energies decreased. The increase in contact angle and reduction in surface energy components was found to be on account of a mixed intermediate state wetting regime owing to the change in roughness due to the induced topographical patterns. To determine the biomimetic nature of the modified and as-received control samples each one was seeded with 2Ă104 cells/ml normal human osteoblast cells and observed after periods of 24 hours and 4 days using optical microscopy and SEM to determine mean cell cover densities and variations in cell morphology. In addition a haeymocytometer was used to show that the cell count for the laser patterned samples had increased by up to a factor of 1.5 compared to the as-received control sample after 4 days of incubation. Significantly, it was determined that all laser-induced patterns gave rise to better cell response in comparison to the as-received control sample studied due to increased preferential cell growth on those surfaces with increased surface roughness
A_4 Symmetry and Lepton Masses and Mixing
Stimulated by Ma's idea which explains the tribimaximal neutrino mixing by
assuming an A_4 flavor symmetry, a lepton mass matrix model is investigated. A
Frogatt-Nielsen type model is assumed, and the flavor structures of the masses
and mixing are caused by the VEVs of SU(2)_L-singlet scalars \phi_i^u and
\phi_i^d (i=1,2,3), which are assigned to {\bf 3} and ({\bf 1}, {\bf 1}',{\bf
1}'') of A_4, respectively.Comment: 13 pages including 1 table, errors in Sec.7 correcte
The 3-3-1 model with S_4 flavor symmetry
We construct a 3-3-1 model based on family symmetry S_4 responsible for the
neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal
quark mixing have been obtained. The new lepton charge \mathcal{L} related to
the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L}
and the lepton parity P_l=(-)^L known as a residual symmetry of L have been
introduced which provide insights in this kind of model. The expected vacuum
alignments resulting in potential minimization can origin from appropriate
violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions
can be explained from the existence of such terms too. If P_l is not broken by
the vacuum values of the scalar fields, there is no mixing between the exotic
and the ordinary quarks at the tree level.Comment: 20 pages, revised versio
Evidence for Shape Co-existence at medium spin in 76Rb
Four previously known rotational bands in 76Rb have been extended to moderate
spins using the Gammasphere and Microball gamma ray and charged particle
detector arrays and the 40Ca(40Ca,3pn) reaction at a beam energy of 165 MeV.
The properties of two of the negative-parity bands can only readily be
interpreted in terms of the highly successful Cranked Nilsson-Strutinsky model
calculations if they have the same configuration in terms of the number of g9/2
particles, but they result from different nuclear shapes (one near-oblate and
the other near-prolate). These data appear to constitute a unique example of
shape co-existing structures at medium spins.Comment: Accepted for publication in Physics Letters
Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes
The electroluminescent properties of a series of solution-processable fluorescent molecular emitters have been systematically investigated. While the introduction of the electron-deficient benzothiadiazole unit in the structure confers efficient electron-injection on the emitter materials, they exhibit different hole-transport properties. The device characteristics of the OLEDs based on these various emitters are discussed on the basis of (i) the energy levels of their HOMO and LUMO and (ii) their hole-transport properties in relation with the charge-transport and blocking properties of the electron- and hole-transport layers. (C) 2012 Elsevier B.V. All rights reserved
Thermal Bremsstrahlung photons probing the nuclear caloric curve
Hard-photon (E 30 MeV) emission from second-chance
nucleon-nucleon Bremsstrahlung collisions in intermediate energy heavy-ion
reactions is studied employing a realistic thermal model. Photon spectra and
yields measured in several nucleus-nucleus reactions are consistent with an
emission from hot nuclear systems with temperatures 4 - 7 MeV. The
corresponding caloric curve in the region of excitation energies
3{\it A} - 8{\it A} MeV shows lower values of than
those expected for a Fermi fluid.Comment: 13 pages, 3 figures. To appear in Physics Letters
Neutrino Clustering in the Galaxy with a Global Monopole
In spherically symmetric, static spacetime, we show that only j=1/2 fermions
can satisfy both Einstein's field equation and Dirac's equation. It is also
shown that neutrinos are able to have effective masses and cluster in the
galactic halo when they are coupled to a global monopole situated at the
galactic core. Astronomical implications of the results are discussed.Comment: 8 pages, Revtex
S_3 Symmetry and Neutrino Masses and Mixings
Based on a universal seesaw mass matrix model with three scalars \phi_i, and
by assuming an S_3 flavor symmetry for the Yukawa interactions, the lepton
masses and mixings are investigated systematically. In order to understand the
observed neutrino mixing, the charged leptons (e, \mu, \tau) are regarded as
the 3 elements (e_1, e_2, e_3) of S_3, while the neutrino mass-eigenstates are
regarded as the irreducible representation (\nu_\eta, \nu_\sigma, \nu_\pi) of
S_3, where (\nu_\pi, \nu_\eta) and \nu_\sigma are a doublet and a singlet,
respectively, which are composed of the 3 elements (\nu_1, \nu_2, \nu_3) of
S_3.Comment: 16 pages, no figure, version to appear in EPJ-
- âŠ