1,555 research outputs found
Multi-agent system for dynamic manufacturing system optimization
This paper deals with the application of multi-agent system concept for optimization of dynamic uncertain process. These problems are known to have a computationally demanding objective function, which could turn to be infeasible when large problems are considered. Therefore, fast approximations to the objective function are required. This paper employs bundle of intelligent systems algorithms tied together in a multi-agent system. In order to demonstrate the system, a metal reheat furnace scheduling problem is adopted for highly demanded optimization problem. The proposed multi-agent approach has been evaluated for different settings of the reheat furnace scheduling problem. Particle Swarm Optimization, Genetic Algorithm with different classic and advanced versions: GA with chromosome differentiation, Age GA, and Sexual GA, and finally a Mimetic GA, which is based on combining the GA as a global optimizer and the PSO as a local optimizer. Experimentation has been performed to validate the multi-agent system on the reheat furnace scheduling problem
Using intelligent optimization methods to improve the group method of data handling in time series prediction
In this paper we show how the performance of the basic algorithm of the Group Method of Data Handling (GMDH) can be improved using Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The new improved GMDH is then used to predict currency exchange rates: the US Dollar to the Euros. The performance of the hybrid GMDHs are compared with that of the conventional GMDH. Two performance measures, the root mean squared error and the mean absolute percentage errors show that the hybrid GMDH algorithm gives more accurate predictions than the conventional GMDH algorithm
Adaptive intelligence applied to numerical optimisation
The article presents modification strategies theoretical comparison and experimental results achieved by adaptive heuristics applied to numerical optimisation of several non-constraint test functions. The aims of the study are to identify and compare how adaptive search heuristics behave within heterogeneous search space without retuning of the search parameters. The achieved results are summarised and analysed, which could be used for comparison to other methods and further investigation
A model checking approach to the parameter estimation of biochemical pathways
Model checking has historically been an important tool to
verify models of a wide variety of systems. Typically a model has to exhibit
certain properties to be classed ‘acceptable’. In this work we use
model checking in a new setting; parameter estimation. We characterise
the desired behaviour of a model in a temporal logic property and alter
the model to make it conform to the property (determined through
model checking). We have implemented a computational system called
MC2(GA) which pairs a model checker with a genetic algorithm. To
drive parameter estimation, the fitness of set of parameters in a model is
the inverse of the distance between its actual behaviour and the desired
behaviour. The model checker used is the simulation-based Monte Carlo
Model Checker for Probabilistic Linear-time Temporal Logic with numerical
constraints, MC2(PLTLc). Numerical constraints as well as the
overall probability of the behaviour expressed in temporal logic are used
to minimise the behavioural distance. We define the theory underlying
our parameter estimation approach in both the stochastic and continuous
worlds. We apply our approach to biochemical systems and present
an illustrative example where we estimate the kinetic rate constants in
a continuous model of a signalling pathway
Discovering predictive variables when evolving cognitive models
A non-dominated sorting genetic algorithm is used to evolve models of learning from different theories for multiple tasks. Correlation analysis is performed to identify parameters which affect performance on specific tasks; these are the predictive variables. Mutation is biased so that changes to parameter values tend to preserve values within the population's current range. Experimental results show that optimal models are evolved, and also that uncovering predictive variables is beneficial in improving the rate of convergence
Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.: 18F-FDG PET and CT tumor delineation in NSCLC
International audienceUNLABELLED: The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. METHODS: Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. RESULTS: All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. CONCLUSION: Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred
A simple two-module problem to exemplify building-block assembly under crossover
Theoretically and empirically it is clear that a genetic algorithm with crossover will outperform a genetic algorithm without crossover in some fitness landscapes, and vice versa in other landscapes. Despite an extensive literature on the subject, and recent proofs of a principled distinction in the abilities of crossover and non-crossover algorithms for a particular theoretical landscape, building general intuitions about when and why crossover performs well when it does is a different matter. In particular, the proposal that crossover might enable the assembly of good building-blocks has been difficult to verify despite many attempts at idealized building-block landscapes. Here we show the first example of a two-module problem that shows a principled advantage for cross-over. This allows us to understand building-block assembly under crossover quite straightforwardly and build intuition about more general landscape classes favoring crossover or disfavoring it
Integrating computer log files for process mining: a genetic algorithm inspired technique
Process mining techniques are applied to single computer log files. But many processes are supported by different software tools and are by consequence recorded into multiple log files. Therefore it would be interesting to find a way to automatically combine such a set of log files for one process. In this paper we describe a technique for merging log files based on a genetic algorithm. We show with a generated test case that this technique works and we give an extended overview of which research is needed to optimise and validate this technique
Implementation of Standard Genetic Algorithm on MIMD machines
Genetic Algorithms (GAs) have been implemented on a number of multiprocessor machines. In many cases the GA has been adapted to the hardware structure of the system. This paper describes the implementation of a standard genetic algorithm on several MIMD multiprocessor systems. It discusses the data dependencies of the different parts of the algorithm and the changes necessary to adapt the serial version to the parallel versions. Timing measurements and speedups are given for a common problem implemented on all machines
- …
