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Abstract. This paper deals with the application of multi-agent system concept 

for optimization of dynamic uncertain process. These problems are known to 

have a computationally demanding objective function, which could turn to be 

infeasible when large problems are considered. Therefore, fast approximations 

to the objective function are required. This paper employs bundle of intelligent 

systems algorithms tied together in a multi-agent system. In order to 

demonstrate the system, a metal reheat furnace scheduling problem is adopted 

for highly demanded optimization problem. The proposed multi-agent approach 

has been evaluated for different settings of the reheat furnace scheduling 

problem. Particle Swarm Optimization, Genetic Algorithm with different 

classic and advanced versions:  GA with chromosome differentiation, Age GA, 

and Sexual GA, and finally a Mimetic GA, which is based on combining the 

GA as a global optimizer and the PSO as a local optimizer. Experimentation has 

been performed to validate the multi-agent system on the reheat furnace 

scheduling problem. 
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1   Introduction 

Intelligent Manufacturing means the application of Artificial Intelligence (AI) and 

Knowledge-based technologies in general to manufacturing problems. This includes a 

large number of technologies such as machine learning, intelligent optimization 

algorithms, data mining, and intelligent systems modeling. Such technologies have so 

far proved to be more popular than AI Planning and Scheduling in such applications.  

In this research, different types of intelligent optimization methodologies have 

been explored for the purpose of planning and scheduling with the emphasis on the 

application of the technology to reheat furnaces scheduling. An informal definition of 

the terms AI Planning and AI Scheduling, has to be defined as accepted in the 

manufacturing community which is as follows: 

Planning: the automatic or semi-automatic construction of a sequence of actions 

such that executing the actions is intended to move the state of the real world from 

some initial state to a final state in which certain goals have been achieved.  
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This sequence is typically produced in partial order, which is with only essential 

ordering relations between the actions, so that actions not so ordered appear in 

pseudo-parallel and can be executed in any order while still achieving the desired 

goals. 

Scheduling: in the pure case, the organization of a known sequence of actions or 

set of sequences along a time-line such that execution is carried out efficiently or 

possibly optimally. By extension, the allocation of a set of resources to such 

sequences of actions so that a set of efficiency or optimality conditions are met. 

Scheduling can therefore be seen as selecting among the various action 

sequences implicit in a partial-order plan in order to find the one that meets efficiency 

or optimality conditions and filling in all the re-sourcing detail to the point at which 

each action can be executed. 

This paper addresses the issues involved in developing a suitable methodology 

for developing a generic intelligent scheduling system using a multi-agent 

architecture. The system includes a number of agents based on different intelligent 

techniques, such as Genetic Algorithms (GA) and its derivates, Particle Swarm 

Optimization (PSO), and hybridizations of the systems. Also, it must operate in an 

environment which requires the system to respond rapidly to complex, potentially real 

time response to a dynamic system. A metal reheating scheduling problem is chosen 

as the test bed. 

2   Multi Agent System 

Conceptually, multi-agent system architecture consists of a series of problem solving 

agents, and the control mechanisms. The agents are used co-operatively to solve a 

complex problem which can be solved by any of the agents individually. The 

subdivision of the system into agents increases the search space for a solution to the 

problem under investigation, which also facilitates the integration of other intelligent 

system components into the system structure. The agents are only allowed to 

communicate with each other via the system, a data structure which stores all the 

information which is either input or output from any of the agents. The purpose of the 

control mechanism is to decide at what time, and in which order, the agents are to be 

executed. At any one time, there may be many agents who are ready to execute, it 

being the role of the control mechanism to determine which of these agents will best 

meet the goals of the system and constrains set by the environment, such as fast or 

accurate solutions. Thus the system can be described as being examples of 

opportunistic reasoning systems [5]. In the following sections, the different agents 

used in the system are described. 

2.1 Practical Swarm Optimization 

Particle Swarm Optimization is a global minimization technique for dealing with 

problems in which a best solution can be represented as a point and a velocity. Each 

particle assigns a value to the position they have, based on certain metrics. They 

remember the best position they have seen, and communicate this position to the other 



members of the swarm. The particles will adjust their own positions and velocity 

based on this information. The communication can be common to the whole swarm, 

or be divided into local neighborhoods of particles [6]. 

2.2 Genetic Algorithms (GA) 

GAs are exploratory search and optimization methods that were devised on the 

principles of natural evolution and population genetics [4]. Unlike other optimization 

techniques, a GA does not require mathematical descriptions of the optimization 

problem, but instead relies on a cost-function, in order to assess the fitness of a 

particular solution to the problem in question. Possible solution candidates are 

represented by a population of individuals (generation) and each individual is encoded 

as a binary string containing a well-defined number of chromosomes (1's and 0's). 

Initially, a population of individuals is generated and the fittest individuals are chosen 

by ranking them according to a priori-defined fitness-function, which is evaluated for 

each member of this population. In order to create another better population from the 

initial one, a mating process is carried out among the fittest individuals in the previous 

generation, since the relative fitness of each individual is used as a criterion for 

choice. Hence, the selected individuals are randomly combined in pairs to produce 

two off-springs by crossing over parts of their chromosomes at a randomly chosen 

position of the string. These new offspring represent a better solution to the problem. 

In order to provide extra excitation to the process of generation, randomly chosen bits 

in the strings are inverted (0's to 1's and 1's to 0's). This mechanism is known as 

mutation and helps to speed up convergence and prevents the population from being 

predominated by the same individuals. All in all, it ensures that the solution set is 

never naught. A compromise, however, should be reached between too much or too 

little excitation by choosing a small probability of mutation.  

2.3 Age Genetic Algorithm (AGA) 

The age GA emulates the natural genetic system more closely to the fact that the age 

of an individual affects its performance and hence it should be introduced in GAs. As 

soon as a new individual is generated in a population its age is assumed to be zero. 

Every iteration age of each individual is increased by one. As in natural genetic 

system, young and old individuals are assumed to be less fit compared to adult 

individuals [3]. The effective fitness of an individual at any iteration is measured by 

considering not only the objective function value, but also including the effect of its 

age. In GA once a particular individual becomes fit, it goes on getting chances to 

produce offspring until the end of the algorithm; if a proportional selection is used; 

thereby increasing the chance of generating similar type of offspring. More fit 

individuals do not normally die, and only the less fit ones die. Whereas in AGA, 

fitness of individuals with respect to age is assumed to increase gradually up to a pre-

defined upper age limit (number of iterations), and then gradually decreases. This, 

more or less, ensures a natural death for each individual keeping its offspring only 



alive. Thus, in this case, a particular individual cannot dominate for a longer period of 

time. Rest of the process of evolution in AGA is same as that in GA.  

2.4 Sexual Genetic Algorithm (SGA) 

The selection of parent chromosomes for reproduction, in case of GA, is done using 

only one selection strategy. When considering the model of sexual selection in the 

area of population genetics it gets obvious that the process of choosing mating 

partners in natural populations is different for male and female individuals. Inspired 

by the idea of male vigor and female choice, Lis and Eiben [7] have proposed Sexual 

GA that utilizes two different selection strategies for the selection of two parents 

required for the crossover. The first type of selection scheme utilizes random selection 

and another selection strategy uses roulette wheel selection for the selection of two 

parents. Rest of the process is similar to that of GA.  

2.5 Genetic Algorithm with Chromosome Differentiation (GACD) 

In GACD [1], the population is divided into male and female population on the basis 

of sexual differentiation. In addition, these populations are made dissimilar 

artificially, and both the populations are generated in a way that maximizes the 

hamming distance between the two classes. The Crossover is only allowed between 

individuals belonging to two distinct populations, and thus introduces greater degree 

of diversity and simultaneously leads to greater exploration in the search space. 

Selection is applied over the entire population, which serves to exploit the information 

gained so far. Thus, GACD accomplishes greater equilibrium between exploration 

and exploitation, which is one of the main features for any adaptive system. The 

chromosomes in the case of GACD are different as it contains additional gene that 

helps in determining the sex of the individuals in the current population.  

2.6 Mimetic Genetic Algorithms (MGA) 

MGAs are inspired by the notions of a mime [2]. In MGA, the chromosomes are 

formed by the mimes not genes (as in conventional GA). The unique aspect of the 

MGA algorithm is that all chromosomes and offspring are allowed to gain some 

experience before being involved in the process of evolution. The experience of the 

chromosomes is simulated by incorporating local search operation. Merz and 

Freisleben [8] proposed a method to perform local search through pair wise 

interchange heuristic. The local neighborhood search is defined as a set of all 

solutions that can be reached from the current solution by swapping two elements in 

the chromosome.  

In this research, the MGA local search engine is based on PSO. When the 

population is generated, it is passed to PSO for gaining some experience. The PSO 

will train the individuals to find local solutions to the problem within a constrained 

environment. Once the individuals are trained, they are passed back to the GA for 



performing the mating operations, and consequently finding solutions for the 

optimization problem. 

3 Reheat Furnace Model 

Metals reheating furnace scheduling is chosen as a test bed for the optimization 

algorithm. Fig. 1 shows a typical continuous annealing process known as the 

continuous annealing and processing line [10]. In this furnace, the material for 

annealing is a cold-rolled strip coil, which is placed on a pay-off reel on the entry side 

of the line. The head end of the coil is then pulled out and welded with the tail end of 

the preceding coil. Then the strip runs through the process with a certain line speed. 

On the delivery side, the strip is cut into a product length by a shear machine and 

coiled again by a tension reel. The heat pattern of the strip is determined according to 

the composition and the product grade of the strip. The actual strip temperature must 

be within the defined ranges from the heat pattern to prevent quality degradation. The 

value of the heat pattern at the outlet of the heating furnace is the reference 

temperature for the control. In most cases, the strip in the heating furnace is heated 

indirectly with gas-fired radiant tubes. The heating furnace is 400 to 500 m in strip 

length and is split into several zones. The furnace temperature and fuel flow rate are 

measured at each zone, while the strip temperature is measured only at the outlet of 

the furnace with a radiation pyrometer. It takes a few minutes for a point on the strip 

to go through the furnace. 

 
Fig. 1. Outline of a continuous annealing process [10]. 

 

For simplicity, a single heating furnace model is considered. The physical state of 

the steel piece annealing process is denoted by z(t) and represents the temperature the 

metal as it evolves through the heating furnace. The metal piece temperature rise 

depends on its thickness, mass, and the furnace reference temperature F; which is pre-

designed at a plant-wide planning level. The thermal process in the heating furnace 

can be represented by a nonlinear heat-transfer equation describing the dynamic 

response of each metal piece temperature so that the temporal change in heat energy 

at a particular location is equal to the transport heat energy plus the radiation heat 

energy as follows [9]: 
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and L is the furnace length (m); t0 the heating start time; σsb is the Stefan–

Boltzmann constant (= 4.88 × 10
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)); Φs is the coefficient of radiative 

heat absorption, 0 < Φs < 1 (assumed as 0.17); ds is the strip specific heat (kcal/m
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deg); τ is the metal thickness (mm). The heat energy equation is a nonlinear 

differential type and simulated in the following environment: L = 500 (m); ds = 4.98 × 

10
4
 kcal/m

3
 deg

4
; Φs = 0:17; τ = 0:71 (mm), u = 100 (m/min) and z(t0) = 30ºC. 

4 Optimization Results 

4.1 Heating Schedules 

Two types of scheduling problems were considered, the first consists of 5 jobs, while 

the second consists of 10 jobs. The scheduling problem is based on finding the best 

schedule to enter the metal pieces in sequence and to set the furnace temperature to 

the required setting for each piece. The objective function is to minimize the heating 

fuel consumption and the time to complete all the jobs. Table 1 shows the 5 (first 5 in 

the table) and 10 jobs heating temperature and time. 

The 5 jobs problem has a search space of 5! = 120 solutions with a total time of 

7400 sec. While the 10 jobs problem is more complicated and has a search space of 

10! = 3,628,800 solutions with a total time of 16750 sec.  

An unscheduled 10 jobs sequence simulation is shown in Fig. 2. Due to the large 

differences between the sequenced jobs temperature, the furnace temperature has to 

be raised and lowered to meet the required temperature for each piece. Since the 

furnace has to be heated and cooled to meet the required piece temperature, this will 

cause the process to take a long time and high energy consumption. The need for 

optimization the schedule for shortest time and lower energy consumption will be 

achieved through the multi-agent optimization system. 

Table 1. Experimental jobs selections. 

Job no. Temperature 

(ºC) 

Heating 

Time (sec) 

1 800 1000 

2 1200 2000 

3 400 1500 

4 600 1200 

5 1000 1700 

6 1400 1550 

7 900 2200 

8 700 800 

9 1300 1900 

10 400 3000 

 



 
Fig. 2. Unscheduled 10 jobs heating sequence. 

 

The optimizers cost function is based on normalizing the fuel consumption and the 

time take for completing all the jobs in the sequence. Equal weighting has been given 

to both objectives (50% each). The final cost function is set by equation (2). 

f = 0.5 × (norm. fuel) + 0.5 × (norm. time) (2) 

4.2 PSO Schedule Optimization 

The PSO algorithm was set to a population size of 100, while the inertial cognitive 

and social constants are as follows: 

Wmin = 0.4, Wmax =0.9, c1 = 1.4, c2 = 1.4, Velocity constraints = ±1,  

No. of iterations = 200 

Due to the fact that there are unfeasible schedule solutions that might be obtained 

by the PSO algorithm, a penalty was given to all unfeasible solutions. This step has 

been added to constrain the PSO in order not to search in the unfeasible solutions 

areas. The algorithm was run for 200 iterations on both schedules (5 and 10 jobs).  

The optimum solution is found after 15 iterations for the 5 and 10 jobs schedule. Fig. 

3 shows the cost function minimization for both cases. The 5 jobs case solution was 

found after 15 iterations and it presents the optimum schedule. Similarly, the 10 jobs 

schedule, a minimum cost function was found after 15 iteration (f = 1583) which does 

not present the optimum cost function (f = 1210). Table 2 shows the best solutions 

found for both cases.  

Table 2. PSO cost function minimization. 

Jobs type Cost function Iteration no. 

5 jobs 621.36 15 

10 jobs 1583.03 15 
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Fig. 3. PSO cost function minimization for 5 and 10 jobs schedule.  

4.3 GAs Schedule Optimization 

The GA algorithm was set as a binary code of 4 bits for each of the numbers of the 

jobs in the schedule. The schedule of 10 jobs makes the chromosome 10×4 = 40 bits 

long. The 4 bit binary number maps to a search space 1 to 16 job selection. The GA 

was set with a mutation rate of 0.03 and a single point crossover at a rate of 0.9. 

However, the different derivations of the GAs will need different settings depending 

on the type of mating and selections procedures. Therefore it was necessary to 

experiment with all the algorithms separately to find the best setting for each type. 

Table 3 shows the best performance found by the GAs after many simulation runs. 

Experimenting with the first type of scheduling (5 jobs) was simple as the 

number of solutions is limited (n! = 120 solutions) and the best solution can be found 

easily. The schedule optimization results are shown in Table 3 for the different GAs 

and Fig. 4 shows the cost function minimization. All the GAs types found the optimal 

solution (f = 586.2) which is the best solution. However, the MGA was the first to 

find the solution, in two iterations only. While SGA required 73 iterations for find the 

optimum solution. The 5 jobs optimum schedule obtained is [3 4 1 5 2] 
 

Table 3. Parameters of best performing GAs. 

Algorithm Cross over 

probability 

Mutation 

probability 

Cost function Iteration 

no. 

GA 0.90 0.03 586.2614 7 

SGA 0.92 0.02 586.2614 73 

GACD 0.95 0.03 586.2614 69 

AGA 0.90 0.05 586.2614 46 

MGA 0.99 0.01 586.2614 2 

 

Experimenting with the second type of scheduling (10 jobs) was based on the same 

best GAs settings found during the 5 jobs experiments. The second type search space 

is very large (n! = 3,628,800 solutions). The schedule optimization results are shown 

in Table 4 for the different GAs and Fig. 5 shows the cost function minimization. The 



different GAs types found different optimal solution where the standard GA (f = 

1209.8) is the best solution. However, the standard GA required 81 iterations to find 

the solution. Meanwhile MGA optimal cost function was not far from the best 

optimum GA, and it took 26 iterations. The 10 jobs optimum schedule obtained is [3 5 
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Fig. 4. GAs cost function minimization for 5 jobs schedule.  

 

Table 4. Cost function optimization algorithms for 10 jobs schedule. 

Algorithm Cost function Iteration no. 

GA 1209.86 81 

SGA 1210.20 73 

GACD 1256.25 32 

AGA 1261.43 235 

MGA 1213.66 26 
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Fig. 6. GA cost function minimization for 10 job schedule. 

 

The search speed of the different GAs allow an interaction between the GAs 

generations. The fast divergence algorithms can provide good chromosomes to the 

more accurate slow algorithms via the multi agent system. This will be governed by 

the control system which should schedule the algorithms to run concurrently and at 

the same time communicate with each other. 



5 Conclusions 

In this paper a description of the multi-agent optimization algorithm has been given.  

Different intelligent optimization techniques have been utilized, such as GA and PSO. 

GAs are found to be a time consuming but robust optimization technique which can 

meet the requirements of manufacturing systems. GAs are capable to handle real 

world problems because the genetic representation of precedence relations among 

operations fits the needs of real world constraints in production scheduling. Moreover, 

GAs are applicable to a wide array of varying objectives and therefore they are open 

to many operational purposes. 

The speed of GA can be improved by introducing fast algorithms, such as PSO, 

in order to find an initial population that advances the GA in finding the solutions in 

real time. Furthermore, using different types of GA can be beneficial in terms of 

finding an accurate solution; however, this has come to a price of being slow. 

Accurate GA takes longer time to converge, while less accurate GAs are much faster 

in converging. The multi-agent system architecture allows the communication 

between different agents, which in this case, at early stages, the fast and less accurate 

GA can pass its chromosomes to the slow and more accurate GA, which will benefit 

from the good chromosomes at an early stage.  
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