
Multi-Agent System for Dynamic Manufacturing

System Optimization

Tawfeeq Al-Kanhal, and Maysam Abbod

School of Engineering and Design,

Brunel University, West London, UK Uxbridge, UK. UB8 3PH
Tawfeeq.Al-kanhal@Brunel.ac.uk

Abstract. This paper deals with the application of multi-agent system concept

for optimization of dynamic uncertain process. These problems are known to

have a computationally demanding objective function, which could turn to be

infeasible when large problems are considered. Therefore, fast approximations

to the objective function are required. This paper employs bundle of intelligent

systems algorithms tied together in a multi-agent system. In order to

demonstrate the system, a metal reheat furnace scheduling problem is adopted

for highly demanded optimization problem. The proposed multi-agent approach

has been evaluated for different settings of the reheat furnace scheduling

problem. Particle Swarm Optimization, Genetic Algorithm with different

classic and advanced versions: GA with chromosome differentiation, Age GA,

and Sexual GA, and finally a Mimetic GA, which is based on combining the

GA as a global optimizer and the PSO as a local optimizer. Experimentation has

been performed to validate the multi-agent system on the reheat furnace

scheduling problem.

Key words: GA; PSO; multi-agent system; reheat furnace; scheduling.

1 Introduction

Intelligent Manufacturing means the application of Artificial Intelligence (AI) and

Knowledge-based technologies in general to manufacturing problems. This includes a

large number of technologies such as machine learning, intelligent optimization

algorithms, data mining, and intelligent systems modeling. Such technologies have so

far proved to be more popular than AI Planning and Scheduling in such applications.

In this research, different types of intelligent optimization methodologies have

been explored for the purpose of planning and scheduling with the emphasis on the

application of the technology to reheat furnaces scheduling. An informal definition of

the terms AI Planning and AI Scheduling, has to be defined as accepted in the

manufacturing community which is as follows:

Planning: the automatic or semi-automatic construction of a sequence of actions

such that executing the actions is intended to move the state of the real world from

some initial state to a final state in which certain goals have been achieved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This sequence is typically produced in partial order, which is with only essential

ordering relations between the actions, so that actions not so ordered appear in

pseudo-parallel and can be executed in any order while still achieving the desired

goals.

Scheduling: in the pure case, the organization of a known sequence of actions or

set of sequences along a time-line such that execution is carried out efficiently or

possibly optimally. By extension, the allocation of a set of resources to such

sequences of actions so that a set of efficiency or optimality conditions are met.

Scheduling can therefore be seen as selecting among the various action

sequences implicit in a partial-order plan in order to find the one that meets efficiency

or optimality conditions and filling in all the re-sourcing detail to the point at which

each action can be executed.

This paper addresses the issues involved in developing a suitable methodology

for developing a generic intelligent scheduling system using a multi-agent

architecture. The system includes a number of agents based on different intelligent

techniques, such as Genetic Algorithms (GA) and its derivates, Particle Swarm

Optimization (PSO), and hybridizations of the systems. Also, it must operate in an

environment which requires the system to respond rapidly to complex, potentially real

time response to a dynamic system. A metal reheating scheduling problem is chosen

as the test bed.

2 Multi Agent System

Conceptually, multi-agent system architecture consists of a series of problem solving

agents, and the control mechanisms. The agents are used co-operatively to solve a

complex problem which can be solved by any of the agents individually. The

subdivision of the system into agents increases the search space for a solution to the

problem under investigation, which also facilitates the integration of other intelligent

system components into the system structure. The agents are only allowed to

communicate with each other via the system, a data structure which stores all the

information which is either input or output from any of the agents. The purpose of the

control mechanism is to decide at what time, and in which order, the agents are to be

executed. At any one time, there may be many agents who are ready to execute, it

being the role of the control mechanism to determine which of these agents will best

meet the goals of the system and constrains set by the environment, such as fast or

accurate solutions. Thus the system can be described as being examples of

opportunistic reasoning systems [5]. In the following sections, the different agents

used in the system are described.

2.1 Practical Swarm Optimization

Particle Swarm Optimization is a global minimization technique for dealing with

problems in which a best solution can be represented as a point and a velocity. Each

particle assigns a value to the position they have, based on certain metrics. They

remember the best position they have seen, and communicate this position to the other

members of the swarm. The particles will adjust their own positions and velocity

based on this information. The communication can be common to the whole swarm,

or be divided into local neighborhoods of particles [6].

2.2 Genetic Algorithms (GA)

GAs are exploratory search and optimization methods that were devised on the

principles of natural evolution and population genetics [4]. Unlike other optimization

techniques, a GA does not require mathematical descriptions of the optimization

problem, but instead relies on a cost-function, in order to assess the fitness of a

particular solution to the problem in question. Possible solution candidates are

represented by a population of individuals (generation) and each individual is encoded

as a binary string containing a well-defined number of chromosomes (1's and 0's).

Initially, a population of individuals is generated and the fittest individuals are chosen

by ranking them according to a priori-defined fitness-function, which is evaluated for

each member of this population. In order to create another better population from the

initial one, a mating process is carried out among the fittest individuals in the previous

generation, since the relative fitness of each individual is used as a criterion for

choice. Hence, the selected individuals are randomly combined in pairs to produce

two off-springs by crossing over parts of their chromosomes at a randomly chosen

position of the string. These new offspring represent a better solution to the problem.

In order to provide extra excitation to the process of generation, randomly chosen bits

in the strings are inverted (0's to 1's and 1's to 0's). This mechanism is known as

mutation and helps to speed up convergence and prevents the population from being

predominated by the same individuals. All in all, it ensures that the solution set is

never naught. A compromise, however, should be reached between too much or too

little excitation by choosing a small probability of mutation.

2.3 Age Genetic Algorithm (AGA)

The age GA emulates the natural genetic system more closely to the fact that the age

of an individual affects its performance and hence it should be introduced in GAs. As

soon as a new individual is generated in a population its age is assumed to be zero.

Every iteration age of each individual is increased by one. As in natural genetic

system, young and old individuals are assumed to be less fit compared to adult

individuals [3]. The effective fitness of an individual at any iteration is measured by

considering not only the objective function value, but also including the effect of its

age. In GA once a particular individual becomes fit, it goes on getting chances to

produce offspring until the end of the algorithm; if a proportional selection is used;

thereby increasing the chance of generating similar type of offspring. More fit

individuals do not normally die, and only the less fit ones die. Whereas in AGA,

fitness of individuals with respect to age is assumed to increase gradually up to a pre-

defined upper age limit (number of iterations), and then gradually decreases. This,

more or less, ensures a natural death for each individual keeping its offspring only

alive. Thus, in this case, a particular individual cannot dominate for a longer period of

time. Rest of the process of evolution in AGA is same as that in GA.

2.4 Sexual Genetic Algorithm (SGA)

The selection of parent chromosomes for reproduction, in case of GA, is done using

only one selection strategy. When considering the model of sexual selection in the

area of population genetics it gets obvious that the process of choosing mating

partners in natural populations is different for male and female individuals. Inspired

by the idea of male vigor and female choice, Lis and Eiben [7] have proposed Sexual

GA that utilizes two different selection strategies for the selection of two parents

required for the crossover. The first type of selection scheme utilizes random selection

and another selection strategy uses roulette wheel selection for the selection of two

parents. Rest of the process is similar to that of GA.

2.5 Genetic Algorithm with Chromosome Differentiation (GACD)

In GACD [1], the population is divided into male and female population on the basis

of sexual differentiation. In addition, these populations are made dissimilar

artificially, and both the populations are generated in a way that maximizes the

hamming distance between the two classes. The Crossover is only allowed between

individuals belonging to two distinct populations, and thus introduces greater degree

of diversity and simultaneously leads to greater exploration in the search space.

Selection is applied over the entire population, which serves to exploit the information

gained so far. Thus, GACD accomplishes greater equilibrium between exploration

and exploitation, which is one of the main features for any adaptive system. The

chromosomes in the case of GACD are different as it contains additional gene that

helps in determining the sex of the individuals in the current population.

2.6 Mimetic Genetic Algorithms (MGA)

MGAs are inspired by the notions of a mime [2]. In MGA, the chromosomes are

formed by the mimes not genes (as in conventional GA). The unique aspect of the

MGA algorithm is that all chromosomes and offspring are allowed to gain some

experience before being involved in the process of evolution. The experience of the

chromosomes is simulated by incorporating local search operation. Merz and

Freisleben [8] proposed a method to perform local search through pair wise

interchange heuristic. The local neighborhood search is defined as a set of all

solutions that can be reached from the current solution by swapping two elements in

the chromosome.

In this research, the MGA local search engine is based on PSO. When the

population is generated, it is passed to PSO for gaining some experience. The PSO

will train the individuals to find local solutions to the problem within a constrained

environment. Once the individuals are trained, they are passed back to the GA for

performing the mating operations, and consequently finding solutions for the

optimization problem.

3 Reheat Furnace Model

Metals reheating furnace scheduling is chosen as a test bed for the optimization

algorithm. Fig. 1 shows a typical continuous annealing process known as the

continuous annealing and processing line [10]. In this furnace, the material for

annealing is a cold-rolled strip coil, which is placed on a pay-off reel on the entry side

of the line. The head end of the coil is then pulled out and welded with the tail end of

the preceding coil. Then the strip runs through the process with a certain line speed.

On the delivery side, the strip is cut into a product length by a shear machine and

coiled again by a tension reel. The heat pattern of the strip is determined according to

the composition and the product grade of the strip. The actual strip temperature must

be within the defined ranges from the heat pattern to prevent quality degradation. The

value of the heat pattern at the outlet of the heating furnace is the reference

temperature for the control. In most cases, the strip in the heating furnace is heated

indirectly with gas-fired radiant tubes. The heating furnace is 400 to 500 m in strip

length and is split into several zones. The furnace temperature and fuel flow rate are

measured at each zone, while the strip temperature is measured only at the outlet of

the furnace with a radiation pyrometer. It takes a few minutes for a point on the strip

to go through the furnace.

Fig. 1. Outline of a continuous annealing process [10].

For simplicity, a single heating furnace model is considered. The physical state of

the steel piece annealing process is denoted by z(t) and represents the temperature the

metal as it evolves through the heating furnace. The metal piece temperature rise

depends on its thickness, mass, and the furnace reference temperature F; which is pre-

designed at a plant-wide planning level. The thermal process in the heating furnace

can be represented by a nonlinear heat-transfer equation describing the dynamic

response of each metal piece temperature so that the temporal change in heat energy

at a particular location is equal to the transport heat energy plus the radiation heat

energy as follows [9]:

])([
)(44

21 tzFKuK
dt

tdz
−+= (1)

where
L

tzf
K

)(0
1

−
= and

τ

φσ
32

1060

2
−

=
s

ssb

d
K

and L is the furnace length (m); t0 the heating start time; σsb is the Stefan–

Boltzmann constant (= 4.88 × 10
-8

 kcal/m
2
 h deg

4
)); Φs is the coefficient of radiative

heat absorption, 0 < Φs < 1 (assumed as 0.17); ds is the strip specific heat (kcal/m
3

deg); τ is the metal thickness (mm). The heat energy equation is a nonlinear

differential type and simulated in the following environment: L = 500 (m); ds = 4.98 ×

10
4
 kcal/m

3
 deg

4
; Φs = 0:17; τ = 0:71 (mm), u = 100 (m/min) and z(t0) = 30ºC.

4 Optimization Results

4.1 Heating Schedules

Two types of scheduling problems were considered, the first consists of 5 jobs, while

the second consists of 10 jobs. The scheduling problem is based on finding the best

schedule to enter the metal pieces in sequence and to set the furnace temperature to

the required setting for each piece. The objective function is to minimize the heating

fuel consumption and the time to complete all the jobs. Table 1 shows the 5 (first 5 in

the table) and 10 jobs heating temperature and time.

The 5 jobs problem has a search space of 5! = 120 solutions with a total time of

7400 sec. While the 10 jobs problem is more complicated and has a search space of

10! = 3,628,800 solutions with a total time of 16750 sec.

An unscheduled 10 jobs sequence simulation is shown in Fig. 2. Due to the large

differences between the sequenced jobs temperature, the furnace temperature has to

be raised and lowered to meet the required temperature for each piece. Since the

furnace has to be heated and cooled to meet the required piece temperature, this will

cause the process to take a long time and high energy consumption. The need for

optimization the schedule for shortest time and lower energy consumption will be

achieved through the multi-agent optimization system.

Table 1. Experimental jobs selections.

Job no. Temperature

(ºC)

Heating

Time (sec)

1 800 1000

2 1200 2000

3 400 1500

4 600 1200

5 1000 1700

6 1400 1550

7 900 2200

8 700 800

9 1300 1900

10 400 3000

Fig. 2. Unscheduled 10 jobs heating sequence.

The optimizers cost function is based on normalizing the fuel consumption and the

time take for completing all the jobs in the sequence. Equal weighting has been given

to both objectives (50% each). The final cost function is set by equation (2).

f = 0.5 × (norm. fuel) + 0.5 × (norm. time) (2)

4.2 PSO Schedule Optimization

The PSO algorithm was set to a population size of 100, while the inertial cognitive

and social constants are as follows:

Wmin = 0.4, Wmax =0.9, c1 = 1.4, c2 = 1.4, Velocity constraints = ±1,

No. of iterations = 200

Due to the fact that there are unfeasible schedule solutions that might be obtained

by the PSO algorithm, a penalty was given to all unfeasible solutions. This step has

been added to constrain the PSO in order not to search in the unfeasible solutions

areas. The algorithm was run for 200 iterations on both schedules (5 and 10 jobs).

The optimum solution is found after 15 iterations for the 5 and 10 jobs schedule. Fig.

3 shows the cost function minimization for both cases. The 5 jobs case solution was

found after 15 iterations and it presents the optimum schedule. Similarly, the 10 jobs

schedule, a minimum cost function was found after 15 iteration (f = 1583) which does

not present the optimum cost function (f = 1210). Table 2 shows the best solutions

found for both cases.

Table 2. PSO cost function minimization.

Jobs type Cost function Iteration no.

5 jobs 621.36 15

10 jobs 1583.03 15

0

1000

2000

3000

4000

5000

0 50 100 150 200

Iteration number

c
o
s
t
fu

n
c
tio

n

.

10 jobs

5 jobs

Fig. 3. PSO cost function minimization for 5 and 10 jobs schedule.

4.3 GAs Schedule Optimization

The GA algorithm was set as a binary code of 4 bits for each of the numbers of the

jobs in the schedule. The schedule of 10 jobs makes the chromosome 10×4 = 40 bits

long. The 4 bit binary number maps to a search space 1 to 16 job selection. The GA

was set with a mutation rate of 0.03 and a single point crossover at a rate of 0.9.

However, the different derivations of the GAs will need different settings depending

on the type of mating and selections procedures. Therefore it was necessary to

experiment with all the algorithms separately to find the best setting for each type.

Table 3 shows the best performance found by the GAs after many simulation runs.

Experimenting with the first type of scheduling (5 jobs) was simple as the

number of solutions is limited (n! = 120 solutions) and the best solution can be found

easily. The schedule optimization results are shown in Table 3 for the different GAs

and Fig. 4 shows the cost function minimization. All the GAs types found the optimal

solution (f = 586.2) which is the best solution. However, the MGA was the first to

find the solution, in two iterations only. While SGA required 73 iterations for find the

optimum solution. The 5 jobs optimum schedule obtained is [3 4 1 5 2]

Table 3. Parameters of best performing GAs.

Algorithm Cross over

probability

Mutation

probability

Cost function Iteration

no.

GA 0.90 0.03 586.2614 7

SGA 0.92 0.02 586.2614 73

GACD 0.95 0.03 586.2614 69

AGA 0.90 0.05 586.2614 46

MGA 0.99 0.01 586.2614 2

Experimenting with the second type of scheduling (10 jobs) was based on the same

best GAs settings found during the 5 jobs experiments. The second type search space

is very large (n! = 3,628,800 solutions). The schedule optimization results are shown

in Table 4 for the different GAs and Fig. 5 shows the cost function minimization. The

different GAs types found different optimal solution where the standard GA (f =

1209.8) is the best solution. However, the standard GA required 81 iterations to find

the solution. Meanwhile MGA optimal cost function was not far from the best

optimum GA, and it took 26 iterations. The 10 jobs optimum schedule obtained is [3 5

6 9 2 7 1 8 4 10]

500

550

600

650

700

750

800

0 50 100 150 200

Itration number

C
o
s
t
fu

n
c
tio

n

.

SGA

AGA

GACD

GA

MGA

Fig. 4. GAs cost function minimization for 5 jobs schedule.

Table 4. Cost function optimization algorithms for 10 jobs schedule.

Algorithm Cost function Iteration no.

GA 1209.86 81

SGA 1210.20 73

GACD 1256.25 32

AGA 1261.43 235

MGA 1213.66 26

1000

1200

1400

1600

1800

2000

2200

2400

0 50 100 150 200 250 300

Iteration number

c
o
s
t
fu

n
c
tio

n

.

SGA

AGA

GACD

GA

MGA

Fig. 6. GA cost function minimization for 10 job schedule.

The search speed of the different GAs allow an interaction between the GAs

generations. The fast divergence algorithms can provide good chromosomes to the

more accurate slow algorithms via the multi agent system. This will be governed by

the control system which should schedule the algorithms to run concurrently and at

the same time communicate with each other.

5 Conclusions

In this paper a description of the multi-agent optimization algorithm has been given.

Different intelligent optimization techniques have been utilized, such as GA and PSO.

GAs are found to be a time consuming but robust optimization technique which can

meet the requirements of manufacturing systems. GAs are capable to handle real

world problems because the genetic representation of precedence relations among

operations fits the needs of real world constraints in production scheduling. Moreover,

GAs are applicable to a wide array of varying objectives and therefore they are open

to many operational purposes.

The speed of GA can be improved by introducing fast algorithms, such as PSO,

in order to find an initial population that advances the GA in finding the solutions in

real time. Furthermore, using different types of GA can be beneficial in terms of

finding an accurate solution; however, this has come to a price of being slow.

Accurate GA takes longer time to converge, while less accurate GAs are much faster

in converging. The multi-agent system architecture allows the communication

between different agents, which in this case, at early stages, the fast and less accurate

GA can pass its chromosomes to the slow and more accurate GA, which will benefit

from the good chromosomes at an early stage.

References

1. Bandyopadhyay, S., Pal, S.K., Mulak, U.: Incorporating Chromosome Differentiation in

Genetic, Information Science, vol. 104, no. 8, pp. 293--319 (1988)

2. Dawkins, R.: The Selfish Gene, Oxford: Oxford University Press (1976)

3. Ghosh, A., Tsutsui, S., Tanaka, H.: Individual Aging in Genetic Algorithms, Australian and

New Zealand Conference on Intelligent Information Systems (1996)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley (1989)

5. Gonzalez, A.J., Dankel, D.D.: The Engineering of Knowledge-Based Systems - Theory and

Practice. Prentice-Hall International, Englewood Cliffs, NJ. (1993)

6. Kennedy, J., Eberhart, R.: Particle Swarm Optimization, Proc. IEEE Int'l. Conf. on Neural

Networks, Perth, Australia, pp. 1942--1948, November (1995)

7. Lis, J., Eiben, A.: A Multi-sexual Genetic Algorithm for Multi-objective Optimization,

Proc of 1996 International Conference on Evolutionary Computing, IEEE, T. Fukuda, and

T. Furuhashi (editors), Nagoyo, Japan, pp. 59--64 (1996)

8. Merz, P., Freisleben, B.: A Genetic Local Search Approach to the Quadratic Assignment

Problem”, In: C.T. Back (editor). Proceedings of the 7th international conference on genetic

algorithms. San Diego, CA: Morgan Kaufmann, pp. 465--72 (1997)

9. Watanapongse, C.D., Gaskey, K.M.: Application of Modern Control to a Continuous

Anneal Line. IEEE Control System Magazine, pp. 32--37 (1988)

10. Yoshitani, N., Hasegawa, A.: Model-Based Control of Strip Temperature for the Heating

Furnace in Continuous Annealing. IEEE Transactions on Control Systems Technology, vol.

6, no. 2, pp. 146--156, March (1998)

